| mlr_pipeops_targettrafoscalerange {mlr3pipelines} | R Documentation |
Linearly Transform a Numeric Target to Match Given Boundaries
Description
Linearly transforms a numeric target of a TaskRegr so it is between lower
and upper. The formula for this is x' = offset + x * scale,
where scale is (upper - lower) / (max(x) - min(x)) and
offset is -min(x) * scale + lower. The same transformation is applied during training and
prediction.
Format
R6Class object inheriting from PipeOpTargetTrafo/PipeOp
Construction
PipeOpTargetTrafoScaleRange$new(id = "targettrafoscalerange", param_vals = list())
-
id::character(1)
Identifier of resulting object, default"targettrafoscalerange". -
param_vals:: namedlist
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Defaultlist().
Input and Output Channels
Input and output channels are inherited from PipeOpTargetTrafo.
State
The $state is a named list containing the slots $offset and $scale.
Parameters
The parameters are the parameters inherited from PipeOpTargetTrafo, as well as:
-
lower::numeric(1)
Target value of smallest item of input target. Initialized to 0. -
upper::numeric(1)
Target value of greatest item of input target. Initialized to 1.
Internals
Overloads PipeOpTargetTrafo's .get_state(), .transform(), and
.invert(). Should be used in combination with PipeOpTargetInvert.
Methods
Only methods inherited from PipeOpTargetTrafo/PipeOp.
See Also
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp,
PipeOpEnsemble,
PipeOpImpute,
PipeOpTargetTrafo,
PipeOpTaskPreproc,
PipeOpTaskPreprocSimple,
mlr_pipeops,
mlr_pipeops_boxcox,
mlr_pipeops_branch,
mlr_pipeops_chunk,
mlr_pipeops_classbalancing,
mlr_pipeops_classifavg,
mlr_pipeops_classweights,
mlr_pipeops_colapply,
mlr_pipeops_collapsefactors,
mlr_pipeops_colroles,
mlr_pipeops_copy,
mlr_pipeops_datefeatures,
mlr_pipeops_encode,
mlr_pipeops_encodeimpact,
mlr_pipeops_encodelmer,
mlr_pipeops_featureunion,
mlr_pipeops_filter,
mlr_pipeops_fixfactors,
mlr_pipeops_histbin,
mlr_pipeops_ica,
mlr_pipeops_imputeconstant,
mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,
mlr_pipeops_imputemean,
mlr_pipeops_imputemedian,
mlr_pipeops_imputemode,
mlr_pipeops_imputeoor,
mlr_pipeops_imputesample,
mlr_pipeops_kernelpca,
mlr_pipeops_learner,
mlr_pipeops_missind,
mlr_pipeops_modelmatrix,
mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply,
mlr_pipeops_mutate,
mlr_pipeops_nmf,
mlr_pipeops_nop,
mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite,
mlr_pipeops_pca,
mlr_pipeops_proxy,
mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse,
mlr_pipeops_regravg,
mlr_pipeops_removeconstants,
mlr_pipeops_renamecolumns,
mlr_pipeops_replicate,
mlr_pipeops_scale,
mlr_pipeops_scalemaxabs,
mlr_pipeops_scalerange,
mlr_pipeops_select,
mlr_pipeops_smote,
mlr_pipeops_spatialsign,
mlr_pipeops_subsample,
mlr_pipeops_targetinvert,
mlr_pipeops_targetmutate,
mlr_pipeops_textvectorizer,
mlr_pipeops_threshold,
mlr_pipeops_tunethreshold,
mlr_pipeops_unbranch,
mlr_pipeops_updatetarget,
mlr_pipeops_vtreat,
mlr_pipeops_yeojohnson
Examples
library(mlr3)
task = tsk("boston_housing")
po = PipeOpTargetTrafoScaleRange$new()
po$train(list(task))
po$predict(list(task))
#syntactic sugar for a graph using ppl():
ttscalerange = ppl("targettrafo", trafo_pipeop = PipeOpTargetTrafoScaleRange$new(),
graph = PipeOpLearner$new(LearnerRegrRpart$new()))
ttscalerange$train(task)
ttscalerange$predict(task)
ttscalerange$state$regr.rpart