mlr_pipeops_targettrafoscalerange {mlr3pipelines}R Documentation

Linearly Transform a Numeric Target to Match Given Boundaries

Description

Linearly transforms a numeric target of a TaskRegr so it is between lower and upper. The formula for this is x' = offset + x * scale, where scale is (upper - lower) / (max(x) - min(x)) and offset is -min(x) * scale + lower. The same transformation is applied during training and prediction.

Format

R6Class object inheriting from PipeOpTargetTrafo/PipeOp

Construction

PipeOpTargetTrafoScaleRange$new(id = "targettrafoscalerange", param_vals = list())

Input and Output Channels

Input and output channels are inherited from PipeOpTargetTrafo.

State

The ⁠$state⁠ is a named list containing the slots ⁠$offset⁠ and ⁠$scale⁠.

Parameters

The parameters are the parameters inherited from PipeOpTargetTrafo, as well as:

Internals

Overloads PipeOpTargetTrafo's .get_state(), .transform(), and .invert(). Should be used in combination with PipeOpTargetInvert.

Methods

Only methods inherited from PipeOpTargetTrafo/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc, PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk, mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply, mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter, mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant, mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner, mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_textvectorizer, mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch, mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples


library(mlr3)
task = tsk("boston_housing")
po = PipeOpTargetTrafoScaleRange$new()

po$train(list(task))
po$predict(list(task))

#syntactic sugar for a graph using ppl():
ttscalerange = ppl("targettrafo", trafo_pipeop = PipeOpTargetTrafoScaleRange$new(),
  graph = PipeOpLearner$new(LearnerRegrRpart$new()))
ttscalerange$train(task)
ttscalerange$predict(task)
ttscalerange$state$regr.rpart


[Package mlr3pipelines version 0.6.0 Index]