| mlr_pipeops_nop {mlr3pipelines} | R Documentation |
Simply Push Input Forward
Description
Simply pushes the input forward.
Can be useful during Graph construction using the %>>%-operator to specify which PipeOp gets connected to which.
Format
R6Class object inheriting from PipeOp.
Construction
PipeOpNOP$new(id = "nop", param_vals = list())
-
id::character(1)
Identifier of resulting object, default"nop". -
param_vals:: namedlist
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Defaultlist().
Input and Output Channels
PipeOpNOP has one input channel named "input", taking any input ("*") both during training and prediction.
PipeOpNOP has one output channel named "output", producing the object given as input ("*") without changes.
State
The $state is left empty (list()).
Parameters
PipeOpNOP has no parameters.
Internals
PipeOpNOP is a useful "default" stand-in for a PipeOp/Graph that does nothing.
Fields
Only fields inherited from PipeOp.
Methods
Only methods inherited from PipeOp.
See Also
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp,
PipeOpEnsemble,
PipeOpImpute,
PipeOpTargetTrafo,
PipeOpTaskPreproc,
PipeOpTaskPreprocSimple,
mlr_pipeops,
mlr_pipeops_boxcox,
mlr_pipeops_branch,
mlr_pipeops_chunk,
mlr_pipeops_classbalancing,
mlr_pipeops_classifavg,
mlr_pipeops_classweights,
mlr_pipeops_colapply,
mlr_pipeops_collapsefactors,
mlr_pipeops_colroles,
mlr_pipeops_copy,
mlr_pipeops_datefeatures,
mlr_pipeops_encode,
mlr_pipeops_encodeimpact,
mlr_pipeops_encodelmer,
mlr_pipeops_featureunion,
mlr_pipeops_filter,
mlr_pipeops_fixfactors,
mlr_pipeops_histbin,
mlr_pipeops_ica,
mlr_pipeops_imputeconstant,
mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,
mlr_pipeops_imputemean,
mlr_pipeops_imputemedian,
mlr_pipeops_imputemode,
mlr_pipeops_imputeoor,
mlr_pipeops_imputesample,
mlr_pipeops_kernelpca,
mlr_pipeops_learner,
mlr_pipeops_missind,
mlr_pipeops_modelmatrix,
mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply,
mlr_pipeops_mutate,
mlr_pipeops_nmf,
mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite,
mlr_pipeops_pca,
mlr_pipeops_proxy,
mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse,
mlr_pipeops_regravg,
mlr_pipeops_removeconstants,
mlr_pipeops_renamecolumns,
mlr_pipeops_replicate,
mlr_pipeops_scale,
mlr_pipeops_scalemaxabs,
mlr_pipeops_scalerange,
mlr_pipeops_select,
mlr_pipeops_smote,
mlr_pipeops_spatialsign,
mlr_pipeops_subsample,
mlr_pipeops_targetinvert,
mlr_pipeops_targetmutate,
mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,
mlr_pipeops_threshold,
mlr_pipeops_tunethreshold,
mlr_pipeops_unbranch,
mlr_pipeops_updatetarget,
mlr_pipeops_vtreat,
mlr_pipeops_yeojohnson
Other Placeholder Pipeops:
mlr_pipeops_copy
Examples
library("mlr3")
nop = po("nop")
nop$train(list(1))
# use `gunion` and `%>>%` to create a "bypass"
# next to "pca"
gr = gunion(list(
po("pca"),
nop
)) %>>% po("featureunion")
gr$train(tsk("iris"))[[1]]$data()