mlr_pipeops_imputemedian {mlr3pipelines}R Documentation

Impute Numerical Features by their Median

Description

Impute numerical features by their median.

Format

R6Class object inheriting from PipeOpImpute/PipeOp.

Construction

PipeOpImputeMedian$new(id = "imputemedian", param_vals = list())

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

The output is the input Task with all affected numeric features missing values imputed by (column-wise) median.

State

The ⁠$state⁠ is a named list with the ⁠$state⁠ elements inherited from PipeOpImpute.

The ⁠$state$model⁠ is a named list of numeric(1) indicating the median of the respective feature.

Parameters

The parameters are the parameters inherited from PipeOpImpute.

Internals

Uses the stats::median() function. Features that are entirely NA are imputed as 0.

Methods

Only methods inherited from PipeOpImpute/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc, PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk, mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply, mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter, mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant, mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner, mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange, mlr_pipeops_textvectorizer, mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch, mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Imputation PipeOps: PipeOpImpute, mlr_pipeops_imputeconstant, mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample

Examples

library("mlr3")

task = tsk("pima")
task$missings()

po = po("imputemedian")
new_task = po$train(list(task = task))[[1]]
new_task$missings()

po$state$model

[Package mlr3pipelines version 0.6.0 Index]