PipeOpEnsemble {mlr3pipelines}R Documentation

Ensembling Base Class

Description

Parent class for PipeOps that aggregate predictions. Implements the private$.train() and private$.predict() methods necessary for a PipeOp and requires deriving classes to create the private$weighted_avg_predictions() function.

Format

Abstract R6Class inheriting from PipeOp.

Construction

Note: This object is typically constructed via a derived class, e.g. PipeOpClassifAvg or PipeOpRegrAvg.

PipeOpEnsemble$new(innum = 0, collect_multiplicity = FALSE, id, param_set = ps(), param_vals = list(), packages = character(0), prediction_type = "Prediction")

Input and Output Channels

PipeOpEnsemble has multiple input channels depending on the innum construction argument, named "input1", "input2", ... if innum is nonzero; if innum is 0, there is only one vararg input channel named "...". All input channels take only NULL during training and take a Prediction during prediction.

PipeOpEnsemble has one output channel named "output", producing NULL during training and a Prediction during prediction.

The output during prediction is in some way a weighted averaged representation of the input.

State

The ⁠$state⁠ is left empty (list()).

Parameters

Internals

The commonality of ensemble methods using PipeOpEnsemble is that they take a NULL-input during training and save an empty ⁠$state⁠. They can be used following a set of PipeOpLearner PipeOps to perform (possibly weighted) prediction averaging. See e.g. PipeOpClassifAvg and PipeOpRegrAvg which both inherit from this class.

Should it be necessary to use the output of preceding Learners during the "training" phase, then PipeOpEnsemble should not be used. In fact, if training time behaviour of a Learner is important, then one should use a PipeOpLearnerCV instead of a PipeOpLearner, and the ensemble can be created with a Learner encapsulated by a PipeOpLearner. See LearnerClassifAvg and LearnerRegrAvg for examples.

Fields

Only fields inherited from PipeOp.

Methods

Methods inherited from PipeOp as well as:

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc, PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk, mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply, mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter, mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant, mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner, mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange, mlr_pipeops_textvectorizer, mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch, mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Multiplicity PipeOps: Multiplicity(), mlr_pipeops_classifavg, mlr_pipeops_featureunion, mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_regravg, mlr_pipeops_replicate

Other Ensembles: mlr_learners_avg, mlr_pipeops_classifavg, mlr_pipeops_ovrunite, mlr_pipeops_regravg


[Package mlr3pipelines version 0.6.0 Index]