oml_task {mlr3oml} | R Documentation |
Interface to OpenML Tasks
Description
This is the class for tasks served on OpenML.
It consists of a dataset and other meta-information such as the target variable for supervised
problems.
This object can also be constructed using the sugar function otsk()
.
mlr3 Integration
Obtain a mlr3::Task by calling
as_task()
.Obtain a mlr3::Resampling by calling
as_resampling()
.
Super class
mlr3oml::OMLObject
-> OMLTask
Active bindings
estimation_procedure
(
list()
)
The estimation procedure, returnsNULL
if none is available.task_splits
(
data.table()
)
A data.table containing the splits as provided by OpenML.tags
(
character()
)
Returns all tags of the object.parquet
(
logical(1)
)
Whether to use parquet.name
(
character(1)
)
Name of the task, extracted from the task description.task_type
(
character(1)
)
The OpenML task type.data_id
(
integer()
)
Data id, extracted from the task description.data
(OMLData)
Access to the underlying OpenML data set via a OMLData object.nrow
(
integer()
)
Number of rows, extracted from the OMLData object.ncol
(
integer()
)
Number of columns, as extracted from the OMLData object.target_names
(
character()
)
Name of the targets, as extracted from the OpenML task description.feature_names
(
character()
)
Name of the features (without targets of this OMLTask).data_name
(
character()
)
Name of the dataset (inferred from the task name).
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
OMLTask$new( id, parquet = parquet_default(), test_server = test_server_default() )
Arguments
id
(
integer(1)
)
OpenML id for the object.parquet
(
logical(1)
)
Whether to use parquet instead of arff. If parquet is not available, it will fall back to arff. Defaults to value of option"mlr3oml.parquet"
orFALSE
if not set.test_server
(
character(1)
)
Whether to use the OpenML test server or public server. Defaults to value of option"mlr3oml.test_server"
, orFALSE
if not set.
Method print()
Prints the object.
For a more detailed printer, convert to a mlr3::Task via $task
.
Usage
OMLTask$print()
Method download()
Downloads the whole object for offline usage.
Usage
OMLTask$download()
Method clone()
The objects of this class are cloneable with this method.
Usage
OMLTask$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
References
Vanschoren J, van Rijn JN, Bischl B, Torgo L (2014). “OpenML.” ACM SIGKDD Explorations Newsletter, 15(2), 49–60. doi:10.1145/2641190.2641198.
Examples
# For technical reasons, examples cannot be included in this R package.
# Instead, these are some relevant resources:
#
# Large-Scale Benchmarking chapter in the mlr3book:
# https://mlr3book.mlr-org.com/chapters/chapter11/large-scale_benchmarking.html
#
# Package Article:
# https://mlr3oml.mlr-org.com/articles/tutorial.html