| oml_task {mlr3oml} | R Documentation |
Interface to OpenML Tasks
Description
This is the class for tasks served on OpenML.
It consists of a dataset and other meta-information such as the target variable for supervised
problems.
This object can also be constructed using the sugar function otsk().
mlr3 Integration
Obtain a mlr3::Task by calling
as_task().Obtain a mlr3::Resampling by calling
as_resampling().
Super class
mlr3oml::OMLObject -> OMLTask
Active bindings
estimation_procedure(
list())
The estimation procedure, returnsNULLif none is available.task_splits(
data.table())
A data.table containing the splits as provided by OpenML.tags(
character())
Returns all tags of the object.parquet(
logical(1))
Whether to use parquet.name(
character(1))
Name of the task, extracted from the task description.task_type(
character(1))
The OpenML task type.data_id(
integer())
Data id, extracted from the task description.data(OMLData)
Access to the underlying OpenML data set via a OMLData object.nrow(
integer())
Number of rows, extracted from the OMLData object.ncol(
integer())
Number of columns, as extracted from the OMLData object.target_names(
character())
Name of the targets, as extracted from the OpenML task description.feature_names(
character())
Name of the features (without targets of this OMLTask).data_name(
character())
Name of the dataset (inferred from the task name).
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
OMLTask$new( id, parquet = parquet_default(), test_server = test_server_default() )
Arguments
id(
integer(1))
OpenML id for the object.parquet(
logical(1))
Whether to use parquet instead of arff. If parquet is not available, it will fall back to arff. Defaults to value of option"mlr3oml.parquet"orFALSEif not set.test_server(
character(1))
Whether to use the OpenML test server or public server. Defaults to value of option"mlr3oml.test_server", orFALSEif not set.
Method print()
Prints the object.
For a more detailed printer, convert to a mlr3::Task via $task.
Usage
OMLTask$print()
Method download()
Downloads the whole object for offline usage.
Usage
OMLTask$download()
Method clone()
The objects of this class are cloneable with this method.
Usage
OMLTask$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
References
Vanschoren J, van Rijn JN, Bischl B, Torgo L (2014). “OpenML.” ACM SIGKDD Explorations Newsletter, 15(2), 49–60. doi:10.1145/2641190.2641198.
Examples
# For technical reasons, examples cannot be included in this R package.
# Instead, these are some relevant resources:
#
# Large-Scale Benchmarking chapter in the mlr3book:
# https://mlr3book.mlr-org.com/chapters/chapter11/large-scale_benchmarking.html
#
# Package Article:
# https://mlr3oml.mlr-org.com/articles/tutorial.html