| oml_flow {mlr3oml} | R Documentation |
Interface to OpenML Flows
Description
This is the class for flows served on OpenML.
Flows represent machine learning algorithms.
This object can also be constructed using the sugar function oflw().
mlr3 Integration
Obtain a mlr3::Learner using
mlr3::as_learner().
Super class
mlr3oml::OMLObject -> OMLFlow
Active bindings
parameter(
data.table)
The parameters of the flow.dependencies(
character())
The dependencies of the flow.tags(
character())
Returns all tags of the object.
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
OMLFlow$new(id, test_server = test_server_default())
Arguments
id(
integer(1))
OpenML id for the object.test_server(
character(1))
Whether to use the OpenML test server or public server. Defaults to value of option"mlr3oml.test_server", orFALSEif not set.
Method print()
Prints the object.
Usage
OMLFlow$print()
Method download()
Downloads the whole object for offline usage.
Usage
OMLFlow$download()
Method clone()
The objects of this class are cloneable with this method.
Usage
OMLFlow$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
References
Vanschoren J, van Rijn JN, Bischl B, Torgo L (2014). “OpenML.” ACM SIGKDD Explorations Newsletter, 15(2), 49–60. doi:10.1145/2641190.2641198.
Examples
# For technical reasons, examples cannot be included in this R package.
# Instead, these are some relevant resources:
#
# Large-Scale Benchmarking chapter in the mlr3book:
# https://mlr3book.mlr-org.com/chapters/chapter11/large-scale_benchmarking.html
#
# Package Article:
# https://mlr3oml.mlr-org.com/articles/tutorial.html