oml_flow {mlr3oml} | R Documentation |
Interface to OpenML Flows
Description
This is the class for flows served on OpenML.
Flows represent machine learning algorithms.
This object can also be constructed using the sugar function oflw()
.
mlr3 Integration
Obtain a mlr3::Learner using
mlr3::as_learner()
.
Super class
mlr3oml::OMLObject
-> OMLFlow
Active bindings
parameter
(
data.table
)
The parameters of the flow.dependencies
(
character()
)
The dependencies of the flow.tags
(
character()
)
Returns all tags of the object.
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
OMLFlow$new(id, test_server = test_server_default())
Arguments
id
(
integer(1)
)
OpenML id for the object.test_server
(
character(1)
)
Whether to use the OpenML test server or public server. Defaults to value of option"mlr3oml.test_server"
, orFALSE
if not set.
Method print()
Prints the object.
Usage
OMLFlow$print()
Method download()
Downloads the whole object for offline usage.
Usage
OMLFlow$download()
Method clone()
The objects of this class are cloneable with this method.
Usage
OMLFlow$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
References
Vanschoren J, van Rijn JN, Bischl B, Torgo L (2014). “OpenML.” ACM SIGKDD Explorations Newsletter, 15(2), 49–60. doi:10.1145/2641190.2641198.
Examples
# For technical reasons, examples cannot be included in this R package.
# Instead, these are some relevant resources:
#
# Large-Scale Benchmarking chapter in the mlr3book:
# https://mlr3book.mlr-org.com/chapters/chapter11/large-scale_benchmarking.html
#
# Package Article:
# https://mlr3oml.mlr-org.com/articles/tutorial.html