sse {mlr3measures} | R Documentation |
Sum of Squared Errors
Description
Measure to compare true observed response with predicted response in regression tasks.
Usage
sse(truth, response, ...)
Arguments
truth |
( |
response |
( |
... |
( |
Details
The Sum of Squared Errors is defined as
\sum_{i=1}^n \left( t_i - r_i \right)^2.
Value
Performance value as numeric(1)
.
Meta Information
Type:
"regr"
Range:
[0, \infty)
Minimize:
TRUE
Required prediction:
response
See Also
Other Regression Measures:
ae()
,
ape()
,
bias()
,
ktau()
,
mae()
,
mape()
,
maxae()
,
maxse()
,
medae()
,
medse()
,
mse()
,
msle()
,
pbias()
,
rae()
,
rmse()
,
rmsle()
,
rrse()
,
rse()
,
rsq()
,
sae()
,
se()
,
sle()
,
smape()
,
srho()
Examples
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
sse(truth, response)
[Package mlr3measures version 0.6.0 Index]