| mse {mlr3measures} | R Documentation |
Mean Squared Error
Description
Measure to compare true observed response with predicted response in regression tasks.
Usage
mse(truth, response, sample_weights = NULL, ...)
Arguments
truth |
( |
response |
( |
sample_weights |
( |
... |
( |
Details
The Mean Squared Error is defined as
\frac{1}{n} w_i \sum_{i=1}^n \left( t_i - r_i \right)^2.
Value
Performance value as numeric(1).
Meta Information
Type:
"regr"Range:
[0, \infty)Minimize:
TRUERequired prediction:
response
See Also
Other Regression Measures:
ae(),
ape(),
bias(),
ktau(),
mae(),
mape(),
maxae(),
maxse(),
medae(),
medse(),
msle(),
pbias(),
rae(),
rmse(),
rmsle(),
rrse(),
rse(),
rsq(),
sae(),
se(),
sle(),
smape(),
srho(),
sse()
Examples
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
mse(truth, response)