ktau {mlr3measures} | R Documentation |
Kendall's tau
Description
Measure to compare true observed response with predicted response in regression tasks.
Usage
ktau(truth, response, ...)
Arguments
truth |
( |
response |
( |
... |
( |
Details
Kendall's tau is defined as Kendall's rank correlation coefficient between truth and response.
Calls stats::cor()
with method
set to "kendall"
.
Value
Performance value as numeric(1)
.
Meta Information
Type:
"regr"
Range:
[-1, 1]
Minimize:
FALSE
Required prediction:
response
References
Rosset S, Perlich C, Zadrozny B (2006). “Ranking-based evaluation of regression models.” Knowledge and Information Systems, 12(3), 331–353. doi:10.1007/s10115-006-0037-3.
See Also
Other Regression Measures:
ae()
,
ape()
,
bias()
,
mae()
,
mape()
,
maxae()
,
maxse()
,
medae()
,
medse()
,
mse()
,
msle()
,
pbias()
,
rae()
,
rmse()
,
rmsle()
,
rrse()
,
rse()
,
rsq()
,
sae()
,
se()
,
sle()
,
smape()
,
srho()
,
sse()
Examples
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
ktau(truth, response)