gmean {mlr3measures} | R Documentation |
Geometric Mean of Recall and Specificity
Description
Measure to compare true observed labels with predicted labels in binary classification tasks.
Usage
gmean(truth, response, positive, na_value = NaN, ...)
Arguments
truth |
( |
response |
( |
positive |
( |
na_value |
( |
... |
( |
Details
Calculates the geometric mean of recall()
R and specificity()
S as
\sqrt{\mathrm{R} \mathrm{S}}.
This measure is undefined if recall or specificity is undefined, i.e. if TP + FN = 0 or if FP + TN = 0.
Value
Performance value as numeric(1)
.
Meta Information
Type:
"binary"
Range:
[0, 1]
Minimize:
FALSE
Required prediction:
response
References
He H, Garcia EA (2009). “Learning from Imbalanced Data.” IEEE Transactions on knowledge and data engineering, 21(9), 1263–1284. doi:10.1109/TKDE.2008.239.
See Also
Other Binary Classification Measures:
auc()
,
bbrier()
,
dor()
,
fbeta()
,
fdr()
,
fn()
,
fnr()
,
fomr()
,
fp()
,
fpr()
,
gpr()
,
npv()
,
ppv()
,
prauc()
,
tn()
,
tnr()
,
tp()
,
tpr()
Examples
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
gmean(truth, response, positive = "a")