| fn {mlr3measures} | R Documentation |
False Negatives
Description
Measure to compare true observed labels with predicted labels in binary classification tasks.
Usage
fn(truth, response, positive, ...)
Arguments
truth |
( |
response |
( |
positive |
( |
... |
( |
Details
This measure counts the false negatives (type 2 error), i.e. the number of predictions indicating a negative class label while in fact it is positive. This is sometimes also called a "false alarm".
Value
Performance value as numeric(1).
Meta Information
Type:
"binary"Range:
[0, \infty)Minimize:
TRUERequired prediction:
response
References
https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram
See Also
Other Binary Classification Measures:
auc(),
bbrier(),
dor(),
fbeta(),
fdr(),
fnr(),
fomr(),
fp(),
fpr(),
gmean(),
gpr(),
npv(),
ppv(),
prauc(),
tn(),
tnr(),
tp(),
tpr()
Examples
set.seed(1)
lvls = c("a", "b")
truth = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
response = factor(sample(lvls, 10, replace = TRUE), levels = lvls)
fn(truth, response, positive = "a")