mlr_loop_functions_emo {mlr3mbo} | R Documentation |
Sequential Multi-Objective Bayesian Optimization
Description
Loop function for sequential multi-objective Bayesian Optimization. Normally used inside an OptimizerMbo. The conceptual counterpart to mlr_loop_functions_ego.
In each iteration after the initial design, the surrogate and acquisition function are updated and the next candidate is chosen based on optimizing the acquisition function.
Usage
bayesopt_emo(
instance,
surrogate,
acq_function,
acq_optimizer,
init_design_size = NULL,
random_interleave_iter = 0L
)
Arguments
instance |
(bbotk::OptimInstanceBatchMultiCrit) |
surrogate |
(SurrogateLearnerCollection) |
acq_function |
(AcqFunction) |
acq_optimizer |
(AcqOptimizer) |
init_design_size |
( |
random_interleave_iter |
( |
Value
invisible(instance)
The original instance is modified in-place and returned invisible.
Note
The
acq_function$surrogate
, even if already populated, will always be overwritten by thesurrogate
.The
acq_optimizer$acq_function
, even if already populated, will always be overwritten byacq_function
.The
surrogate$archive
, even if already populated, will always be overwritten by the bbotk::Archive of the bbotk::OptimInstanceBatchMultiCrit.
See Also
Other Loop Function:
loop_function
,
mlr_loop_functions
,
mlr_loop_functions_ego
,
mlr_loop_functions_mpcl
,
mlr_loop_functions_parego
,
mlr_loop_functions_smsego
Examples
if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {
library(bbotk)
library(paradox)
library(mlr3learners)
fun = function(xs) {
list(y1 = xs$x^2, y2 = (xs$x - 2) ^ 2)
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y1 = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)
instance = OptimInstanceBatchMultiCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))
surrogate = default_surrogate(instance)
acq_function = acqf("ehvi")
acq_optimizer = acqo(
optimizer = opt("random_search", batch_size = 100),
terminator = trm("evals", n_evals = 100))
optimizer = opt("mbo",
loop_function = bayesopt_emo,
surrogate = surrogate,
acq_function = acq_function,
acq_optimizer = acq_optimizer)
optimizer$optimize(instance)
}