mlr_learners_regr.svm {mlr3learners}R Documentation

Support Vector Machine

Description

Support vector machine for regression. Calls e1071::svm() from package e1071.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("regr.svm")
lrn("regr.svm")

Meta Information

Parameters

Id Type Default Levels Range
cachesize numeric 40 (-\infty, \infty)
coef0 numeric 0 (-\infty, \infty)
cost numeric 1 [0, \infty)
cross integer 0 [0, \infty)
degree integer 3 [1, \infty)
epsilon numeric 0.1 [0, \infty)
fitted logical TRUE TRUE, FALSE -
gamma numeric - [0, \infty)
kernel character radial linear, polynomial, radial, sigmoid -
nu numeric 0.5 (-\infty, \infty)
scale untyped TRUE -
shrinking logical TRUE TRUE, FALSE -
tolerance numeric 0.001 [0, \infty)
type character eps-regression eps-regression, nu-regression -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrSVM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrSVM$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrSVM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

Cortes, Corinna, Vapnik, Vladimir (1995). “Support-vector networks.” Machine Learning, 20(3), 273–297. doi:10.1007/BF00994018.

See Also

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.qda, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.kknn, mlr_learners_regr.km, mlr_learners_regr.lm, mlr_learners_regr.nnet, mlr_learners_regr.ranger, mlr_learners_regr.xgboost

Examples

if (requireNamespace("e1071", quietly = TRUE)) {
# Define the Learner and set parameter values
learner = lrn("regr.svm")
print(learner)

# Define a Task
task = tsk("mtcars")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

# print the model
print(learner$model)

# importance method
if("importance" %in% learner$properties) print(learner$importance)

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
}

[Package mlr3learners version 0.7.0 Index]