mlr_learners_regr.nnet {mlr3learners}R Documentation

Neural Network Regression Learner

Description

Single Layer Neural Network. Calls nnet::nnet.formula() from package nnet.

Note that modern neural networks with multiple layers are connected via package mlr3torch.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("regr.nnet")
lrn("regr.nnet")

Meta Information

Parameters

Id Type Default Levels Range
Hess logical FALSE TRUE, FALSE -
MaxNWts integer 1000 [1, \infty)
Wts untyped - -
abstol numeric 1e-04 (-\infty, \infty)
censored logical FALSE TRUE, FALSE -
contrasts untyped NULL -
decay numeric 0 (-\infty, \infty)
mask untyped - -
maxit integer 100 [1, \infty)
na.action untyped - -
rang numeric 0.7 (-\infty, \infty)
reltol numeric 1e-08 (-\infty, \infty)
size integer 3 [0, \infty)
skip logical FALSE TRUE, FALSE -
subset untyped - -
trace logical TRUE TRUE, FALSE -
formula untyped - -

Initial parameter values

Custom mlr3 parameters

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrNnet

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrNnet$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrNnet$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

Ripley BD (1996). Pattern Recognition and Neural Networks. Cambridge University Press. doi:10.1017/cbo9780511812651.

See Also

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.qda, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.kknn, mlr_learners_regr.km, mlr_learners_regr.lm, mlr_learners_regr.ranger, mlr_learners_regr.svm, mlr_learners_regr.xgboost

Examples

if (requireNamespace("nnet", quietly = TRUE)) {
# Define the Learner and set parameter values
learner = lrn("regr.nnet")
print(learner)

# Define a Task
task = tsk("mtcars")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

# print the model
print(learner$model)

# importance method
if("importance" %in% learner$properties) print(learner$importance)

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
}

[Package mlr3learners version 0.7.0 Index]