| mlr_learners_regr.km {mlr3learners} | R Documentation |
Kriging Regression Learner
Description
Kriging regression.
Calls DiceKriging::km() from package DiceKriging.
The predict type hyperparameter "type" defaults to "sk" (simple kriging).
The additional hyperparameter
nugget.stabilityis used to overwrite the hyperparameternuggetwithnugget.stability * var(y)before training to improve the numerical stability. We recommend a value of1e-8.The additional hyperparameter
jittercan be set to addN(0, [jitter])-distributed noise to the data before prediction to avoid perfect interpolation. We recommend a value of1e-12.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("regr.km")
lrn("regr.km")
Meta Information
Task type: “regr”
Predict Types: “response”, “se”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3learners, DiceKriging
Parameters
| Id | Type | Default | Levels | Range |
| bias.correct | logical | FALSE | TRUE, FALSE | - |
| checkNames | logical | TRUE | TRUE, FALSE | - |
| coef.cov | untyped | NULL | - | |
| coef.trend | untyped | NULL | - | |
| coef.var | untyped | NULL | - | |
| control | untyped | NULL | - | |
| cov.compute | logical | TRUE | TRUE, FALSE | - |
| covtype | character | matern5_2 | gauss, matern5_2, matern3_2, exp, powexp | - |
| estim.method | character | MLE | MLE, LOO | - |
| gr | logical | TRUE | TRUE, FALSE | - |
| iso | logical | FALSE | TRUE, FALSE | - |
| jitter | numeric | 0 | [0, \infty) |
|
| kernel | untyped | NULL | - | |
| knots | untyped | NULL | - | |
| light.return | logical | FALSE | TRUE, FALSE | - |
| lower | untyped | NULL | - | |
| multistart | integer | 1 | (-\infty, \infty) |
|
| noise.var | untyped | NULL | - | |
| nugget | numeric | - | (-\infty, \infty) |
|
| nugget.estim | logical | FALSE | TRUE, FALSE | - |
| nugget.stability | numeric | 0 | [0, \infty) |
|
| optim.method | character | BFGS | BFGS, gen | - |
| parinit | untyped | NULL | - | |
| penalty | untyped | NULL | - | |
| scaling | logical | FALSE | TRUE, FALSE | - |
| se.compute | logical | TRUE | TRUE, FALSE | - |
| type | character | SK | SK, UK | - |
| upper | untyped | NULL | - | |
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrKM
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerRegrKM$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerRegrKM$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
References
Roustant O, Ginsbourger D, Deville Y (2012). “DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization.” Journal of Statistical Software, 51(1), 1–55. doi:10.18637/jss.v051.i01.
See Also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
-
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages). -
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
-
mlr3proba for probabilistic supervised regression and survival analysis.
-
mlr3cluster for unsupervised clustering.
-
-
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_classif.cv_glmnet,
mlr_learners_classif.glmnet,
mlr_learners_classif.kknn,
mlr_learners_classif.lda,
mlr_learners_classif.log_reg,
mlr_learners_classif.multinom,
mlr_learners_classif.naive_bayes,
mlr_learners_classif.nnet,
mlr_learners_classif.qda,
mlr_learners_classif.ranger,
mlr_learners_classif.svm,
mlr_learners_classif.xgboost,
mlr_learners_regr.cv_glmnet,
mlr_learners_regr.glmnet,
mlr_learners_regr.kknn,
mlr_learners_regr.lm,
mlr_learners_regr.nnet,
mlr_learners_regr.ranger,
mlr_learners_regr.svm,
mlr_learners_regr.xgboost
Examples
if (requireNamespace("DiceKriging", quietly = TRUE)) {
# Define the Learner and set parameter values
learner = lrn("regr.km")
print(learner)
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# print the model
print(learner$model)
# importance method
if("importance" %in% learner$properties) print(learner$importance)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
}