| mlr_learners_classif.cv_glmnet {mlr3learners} | R Documentation |
GLM with Elastic Net Regularization Classification Learner
Description
Generalized linear models with elastic net regularization.
Calls glmnet::cv.glmnet() from package glmnet.
The default for hyperparameter family is set to "binomial" or "multinomial",
depending on the number of classes.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("classif.cv_glmnet")
lrn("classif.cv_glmnet")
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3learners, glmnet
Parameters
| Id | Type | Default | Levels | Range |
| alignment | character | lambda | lambda, fraction | - |
| alpha | numeric | 1 | [0, 1] |
|
| big | numeric | 9.9e+35 | (-\infty, \infty) |
|
| devmax | numeric | 0.999 | [0, 1] |
|
| dfmax | integer | - | [0, \infty) |
|
| epsnr | numeric | 1e-08 | [0, 1] |
|
| eps | numeric | 1e-06 | [0, 1] |
|
| exclude | integer | - | [1, \infty) |
|
| exmx | numeric | 250 | (-\infty, \infty) |
|
| fdev | numeric | 1e-05 | [0, 1] |
|
| foldid | untyped | NULL | - | |
| gamma | untyped | - | - | |
| grouped | logical | TRUE | TRUE, FALSE | - |
| intercept | logical | TRUE | TRUE, FALSE | - |
| keep | logical | FALSE | TRUE, FALSE | - |
| lambda.min.ratio | numeric | - | [0, 1] |
|
| lambda | untyped | - | - | |
| lower.limits | untyped | - | - | |
| maxit | integer | 100000 | [1, \infty) |
|
| mnlam | integer | 5 | [1, \infty) |
|
| mxitnr | integer | 25 | [1, \infty) |
|
| mxit | integer | 100 | [1, \infty) |
|
| nfolds | integer | 10 | [3, \infty) |
|
| nlambda | integer | 100 | [1, \infty) |
|
| offset | untyped | NULL | - | |
| parallel | logical | FALSE | TRUE, FALSE | - |
| penalty.factor | untyped | - | - | |
| pmax | integer | - | [0, \infty) |
|
| pmin | numeric | 1e-09 | [0, 1] |
|
| prec | numeric | 1e-10 | (-\infty, \infty) |
|
| predict.gamma | numeric | gamma.1se | (-\infty, \infty) |
|
| relax | logical | FALSE | TRUE, FALSE | - |
| s | numeric | lambda.1se | [0, \infty) |
|
| standardize | logical | TRUE | TRUE, FALSE | - |
| standardize.response | logical | FALSE | TRUE, FALSE | - |
| thresh | numeric | 1e-07 | [0, \infty) |
|
| trace.it | integer | 0 | [0, 1] |
|
| type.gaussian | character | - | covariance, naive | - |
| type.logistic | character | - | Newton, modified.Newton | - |
| type.measure | character | deviance | deviance, class, auc, mse, mae | - |
| type.multinomial | character | - | ungrouped, grouped | - |
| upper.limits | untyped | - | - | |
Internal Encoding
Starting with mlr3 v0.5.0, the order of class labels is reversed prior to
model fitting to comply to the stats::glm() convention that the negative class is provided
as the first factor level.
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifCVGlmnet
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClassifCVGlmnet$new()
Method selected_features()
Returns the set of selected features as reported by glmnet::predict.glmnet()
with type set to "nonzero".
Usage
LearnerClassifCVGlmnet$selected_features(lambda = NULL)
Arguments
lambda(
numeric(1))
Customlambda, defaults to the active lambda depending on parameter set.
Returns
(character()) of feature names.
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClassifCVGlmnet$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
References
Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01.
See Also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
-
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages). -
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
-
mlr3proba for probabilistic supervised regression and survival analysis.
-
mlr3cluster for unsupervised clustering.
-
-
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_classif.glmnet,
mlr_learners_classif.kknn,
mlr_learners_classif.lda,
mlr_learners_classif.log_reg,
mlr_learners_classif.multinom,
mlr_learners_classif.naive_bayes,
mlr_learners_classif.nnet,
mlr_learners_classif.qda,
mlr_learners_classif.ranger,
mlr_learners_classif.svm,
mlr_learners_classif.xgboost,
mlr_learners_regr.cv_glmnet,
mlr_learners_regr.glmnet,
mlr_learners_regr.kknn,
mlr_learners_regr.km,
mlr_learners_regr.lm,
mlr_learners_regr.nnet,
mlr_learners_regr.ranger,
mlr_learners_regr.svm,
mlr_learners_regr.xgboost
Examples
if (requireNamespace("glmnet", quietly = TRUE)) {
# Define the Learner and set parameter values
learner = lrn("classif.cv_glmnet")
print(learner)
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# print the model
print(learner$model)
# importance method
if("importance" %in% learner$properties) print(learner$importance)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
}