mlr_fselectors_shadow_variable_search {mlr3fselect} | R Documentation |
Feature Selection with Shadow Variable Search
Description
Feature selection using the Shadow Variable Search Algorithm. Shadow variable search creates for each feature a permutated copy and stops when one of them is selected.
Details
The feature selection terminates itself when the first shadow variable is selected. It is not necessary to set a termination criterion.
Resources
The gallery features a collection of case studies and demos about optimization.
Run a feature selection with Shadow Variable Search.
Dictionary
This FSelector can be instantiated with the associated sugar function fs()
:
fs("shadow_variable_search")
Super classes
mlr3fselect::FSelector
-> mlr3fselect::FSelectorBatch
-> FSelectorBatchShadowVariableSearch
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.'
Usage
FSelectorBatchShadowVariableSearch$new()
Method optimization_path()
Returns the optimization path.
Usage
FSelectorBatchShadowVariableSearch$optimization_path(inst)
Arguments
inst
(FSelectInstanceBatchSingleCrit)
Instance optimized with FSelectorBatchShadowVariableSearch.
Returns
Method clone()
The objects of this class are cloneable with this method.
Usage
FSelectorBatchShadowVariableSearch$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Source
Thomas J, Hepp T, Mayr A, Bischl B (2017). “Probing for Sparse and Fast Variable Selection with Model-Based Boosting.” Computational and Mathematical Methods in Medicine, 2017, 1–8. doi:10.1155/2017/1421409.
Wu Y, Boos DD, Stefanski LA (2007). “Controlling Variable Selection by the Addition of Pseudovariables.” Journal of the American Statistical Association, 102(477), 235–243. doi:10.1198/016214506000000843.
See Also
Other FSelector:
FSelector
,
mlr_fselectors
,
mlr_fselectors_design_points
,
mlr_fselectors_exhaustive_search
,
mlr_fselectors_genetic_search
,
mlr_fselectors_random_search
,
mlr_fselectors_rfe
,
mlr_fselectors_rfecv
,
mlr_fselectors_sequential
Examples
# Feature Selection
# retrieve task and load learner
task = tsk("penguins")
learner = lrn("classif.rpart")
# run feature selection on the Palmer Penguins data set
instance = fselect(
fselector = fs("shadow_variable_search"),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
)
# best performing feature subset
instance$result
# all evaluated feature subsets
as.data.table(instance$archive)
# subset the task and fit the final model
task$select(instance$result_feature_set)
learner$train(task)