mlr_fselectors_design_points {mlr3fselect} | R Documentation |
Feature Selection with Design Points
Description
Feature selection using user-defined feature sets.
Details
The feature sets are evaluated in order as given.
The feature selection terminates itself when all feature sets are evaluated. It is not necessary to set a termination criterion.
Dictionary
This FSelector can be instantiated with the associated sugar function fs()
:
fs("design_points")
Parameters
batch_size
integer(1)
Maximum number of configurations to try in a batch.design
data.table::data.table
Design points to try in search, one per row.
Super classes
mlr3fselect::FSelector
-> mlr3fselect::FSelectorBatch
-> mlr3fselect::FSelectorBatchFromOptimizerBatch
-> FSelectorBatchDesignPoints
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
FSelectorBatchDesignPoints$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
FSelectorBatchDesignPoints$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
Other FSelector:
FSelector
,
mlr_fselectors
,
mlr_fselectors_exhaustive_search
,
mlr_fselectors_genetic_search
,
mlr_fselectors_random_search
,
mlr_fselectors_rfe
,
mlr_fselectors_rfecv
,
mlr_fselectors_sequential
,
mlr_fselectors_shadow_variable_search
Examples
# Feature Selection
# retrieve task and load learner
task = tsk("pima")
learner = lrn("classif.rpart")
# create design
design = mlr3misc::rowwise_table(
~age, ~glucose, ~insulin, ~mass, ~pedigree, ~pregnant, ~pressure, ~triceps,
TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE,
TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE,
TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE,
TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE
)
# run feature selection on the Pima Indians diabetes data set
instance = fselect(
fselector = fs("design_points", design = design),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce")
)
# best performing feature set
instance$result
# all evaluated feature sets
as.data.table(instance$archive)
# subset the task and fit the final model
task$select(instance$result_feature_set)
learner$train(task)