mlr_measures_fairness {mlr3fairness} | R Documentation |
Fairness Measures in mlr3
Description
Fairness Measures in mlr3
Usage
mlr_measures_fairness
Format
An object of class data.table
(inherits from data.frame
) with 18 rows and 2 columns.
Value
A data.table containing an overview of available fairness metrics.
Predefined measures
mlr3fairness comes with a set of predefined fairness measures as listed below. For full flexibility, MeasureFairness can be used to construct classical group fairness measures based on a difference between a performance metrics across groups by combining a performance measure with an operation for measuring differences. Furthermore MeasureSubgroup can be used to measure performance in a given subgroup, or alternatively groupwise_metrics(measure, task) to instantiate a measure for each subgroup in a Task.
key | description |
fairness.acc | Absolute differences in accuracy across groups |
fairness.mse | Absolute differences in mean squared error across groups |
fairness.fnr | Absolute differences in false negative rates across groups |
fairness.fpr | Absolute differences in false positive rates across groups |
fairness.tnr | Absolute differences in true negative rates across groups |
fairness.tpr | Absolute differences in true positive rates across groups |
fairness.npv | Absolute differences in negative predictive values across groups |
fairness.ppv | Absolute differences in positive predictive values across groups |
fairness.fomr | Absolute differences in false omission rates across groups |
fairness.fp | Absolute differences in false positives across groups |
fairness.tp | Absolute differences in true positives across groups |
fairness.tn | Absolute differences in true negatives across groups |
fairness.fn | Absolute differences in false negatives across groups |
fairness.cv | Difference in positive class prediction, also known as Calders-Wevers gap or demographic parity |
fairness.eod | Equalized Odds: Mean of absolute differences between true positive and false positive rates across groups |
fairness.pp | Predictive Parity: Mean of absolute differences between ppv and npv across groups |
fairness.acc_eod=.05 | Accuracy under equalized odds < 0.05 constraint |
fairness.acc_ppv=.05 | Accuracy under ppv difference < 0.05 constraint |
Examples
library("mlr3")
# Predefined measures:
mlr_measures_fairness$key
[Package mlr3fairness version 0.3.2 Index]