mlr_learners_clust.meanshift {mlr3cluster}R Documentation

Mean Shift Clustering Learner

Description

A LearnerClust for Mean Shift clustering implemented in LPCM::ms(). There is no predict method for LPCM::ms(), so the method returns cluster labels for the 'training' data.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("clust.meanshift")
lrn("clust.meanshift")

Meta Information

Parameters

Id Type Default Range
h untyped - -
subset untyped - -
scaled integer 1 [0, \infty)
iter integer 200 [1, \infty)
thr numeric 0.01 (-\infty, \infty)

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMeanShift

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClustMeanShift$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClustMeanShift$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

Cheng, Yizong (1995). “Mean shift, mode seeking, and clustering.” IEEE transactions on pattern analysis and machine intelligence, 17(8), 790–799.

See Also

Other Learner: mlr_learners_clust.MBatchKMeans, mlr_learners_clust.SimpleKMeans, mlr_learners_clust.agnes, mlr_learners_clust.ap, mlr_learners_clust.cmeans, mlr_learners_clust.cobweb, mlr_learners_clust.dbscan, mlr_learners_clust.dbscan_fpc, mlr_learners_clust.diana, mlr_learners_clust.em, mlr_learners_clust.fanny, mlr_learners_clust.featureless, mlr_learners_clust.ff, mlr_learners_clust.hclust, mlr_learners_clust.hdbscan, mlr_learners_clust.kkmeans, mlr_learners_clust.kmeans, mlr_learners_clust.mclust, mlr_learners_clust.optics, mlr_learners_clust.pam, mlr_learners_clust.xmeans

Examples

if (requireNamespace("LPCM")) {
  learner = mlr3::lrn("clust.meanshift")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}

[Package mlr3cluster version 0.1.9 Index]