mlr_learners_clust.mclust {mlr3cluster} | R Documentation |
Gaussian Mixture Models-Based Clustering Learner
Description
A LearnerClust for model-based clustering implemented in mclust::Mclust()
.
The predict method uses mclust::predict.Mclust()
to compute the
cluster memberships for new data.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("clust.mclust") lrn("clust.mclust")
Meta Information
Task type: “clust”
Predict Types: “partition”, “prob”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, mclust
Parameters
Id | Type | Default |
G | untyped | :, 1, 9 |
modelNames | untyped | - |
prior | untyped | - |
control | untyped | mclust::emControl |
initialization | untyped | - |
x | untyped | - |
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustMclust
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustMclust$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustMclust$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
References
Scrucca, Luca, Fop, Michael, Murphy, Brendan T, Raftery, E A (2016). “mclust 5: clustering, classification and density estimation using Gaussian finite mixture models.” The R journal, 8(1), 289.
Fraley, Chris, Raftery, E A (2002). “Model-based clustering, discriminant analysis, and density estimation.” Journal of the American statistical Association, 97(458), 611–631.
See Also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
-
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages). -
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
-
mlr3proba for probabilistic supervised regression and survival analysis.
-
mlr3cluster for unsupervised clustering.
-
-
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans
,
mlr_learners_clust.SimpleKMeans
,
mlr_learners_clust.agnes
,
mlr_learners_clust.ap
,
mlr_learners_clust.cmeans
,
mlr_learners_clust.cobweb
,
mlr_learners_clust.dbscan
,
mlr_learners_clust.dbscan_fpc
,
mlr_learners_clust.diana
,
mlr_learners_clust.em
,
mlr_learners_clust.fanny
,
mlr_learners_clust.featureless
,
mlr_learners_clust.ff
,
mlr_learners_clust.hclust
,
mlr_learners_clust.hdbscan
,
mlr_learners_clust.kkmeans
,
mlr_learners_clust.kmeans
,
mlr_learners_clust.meanshift
,
mlr_learners_clust.optics
,
mlr_learners_clust.pam
,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("mclust")) {
learner = mlr3::lrn("clust.mclust")
print(learner)
# available parameters:
learner$param_set$ids()
}