mlr_tasks_spam {mlr3}R Documentation

Spam Classification Task

Description

Spam data set from the UCI machine learning repository (http://archive.ics.uci.edu/dataset/94/spambase). Data set collected at Hewlett-Packard Labs to classify emails as spam or non-spam. 57 variables indicate the frequency of certain words and characters in the e-mail. The positive class is set to "spam".

Format

R6::R6Class inheriting from TaskClassif.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk():

mlr_tasks$get("spam")
tsk("spam")

Meta Information

Source

Creators: Mark Hopkins, Erik Reeber, George Forman, Jaap Suermondt. Hewlett-Packard Labs, 1501 Page Mill Rd., Palo Alto, CA 94304

Donor: George Forman (gforman at nospam hpl.hp.com) 650-857-7835

Preprocessing: Columns have been renamed. Preprocessed data taken from the kernlab package.

References

Dua, Dheeru, Graff, Casey (2017). “UCI Machine Learning Repository.” http://archive.ics.uci.edu/datasets.

See Also

Other Task: Task, TaskClassif, TaskRegr, TaskSupervised, TaskUnsupervised, mlr_tasks, mlr_tasks_boston_housing, mlr_tasks_breast_cancer, mlr_tasks_german_credit, mlr_tasks_iris, mlr_tasks_mtcars, mlr_tasks_penguins, mlr_tasks_pima, mlr_tasks_sonar, mlr_tasks_wine, mlr_tasks_zoo


[Package mlr3 version 0.20.2 Index]