mlr_resamplings_subsampling {mlr3} | R Documentation |
Subsampling Resampling
Description
Splits data repeats
(default: 30) times into training and test set
with a ratio of ratio
(default: 2/3) observations going into the training set.
Dictionary
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("subsampling") rsmp("subsampling")
Parameters
-
repeats
(integer(1)
)
Number of repetitions. -
ratio
(numeric(1)
)
Ratio of observations to put into the training set.
Super class
mlr3::Resampling
-> ResamplingSubsampling
Active bindings
iters
(
integer(1)
)
Returns the number of resampling iterations, depending on the values stored in theparam_set
.
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
ResamplingSubsampling$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
ResamplingSubsampling$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
References
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069.
See Also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
-
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages). -
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
Examples
# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)
# Instantiate Resampling
subsampling = rsmp("subsampling", repeats = 2, ratio = 0.5)
subsampling$instantiate(task)
# Individual sets:
subsampling$train_set(1)
subsampling$test_set(1)
# Disjunct sets:
intersect(subsampling$train_set(1), subsampling$test_set(1))
# Internal storage:
subsampling$instance$train # list of index vectors