mlr_resamplings_loo {mlr3} | R Documentation |
Leave-One-Out Cross-Validation
Description
Splits data using leave-one-observation-out. This is identical to cross-validation with the number of folds set to the number of observations.
If this resampling is combined with the grouping features of tasks, it is possible to create custom splits based on an arbitrary factor variable, see the examples.
Dictionary
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("loo") rsmp("loo")
Super class
mlr3::Resampling
-> ResamplingLOO
Active bindings
iters
(
integer(1)
)
Returns the number of resampling iterations which is the number of rows of the task provided to instantiate. IsNA
if the resampling has not been instantiated.
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
ResamplingLOO$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
ResamplingLOO$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
References
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069.
See Also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
-
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages). -
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
Examples
# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)
# Instantiate Resampling
loo = rsmp("loo")
loo$instantiate(task)
# Individual sets:
loo$train_set(1)
loo$test_set(1)
# Disjunct sets:
intersect(loo$train_set(1), loo$test_set(1))
# Internal storage:
loo$instance # vector
# Combine with group feature of tasks:
task = tsk("penguins")
task$set_col_roles("island", add_to = "group")
loo$instantiate(task)
loo$iters # one fold for each level of "island"