mlr_resamplings_insample {mlr3} | R Documentation |
Insample Resampling
Description
Uses all observations as training and as test set.
Dictionary
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("insample") rsmp("insample")
Super class
mlr3::Resampling
-> ResamplingInsample
Public fields
iters
(
integer(1)
)
Returns the number of resampling iterations, depending on the values stored in theparam_set
.
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
ResamplingInsample$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
ResamplingInsample$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
-
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages). -
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
Examples
# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)
# Instantiate Resampling
insample = rsmp("insample")
insample$instantiate(task)
# Train set equal to test set:
setequal(insample$train_set(1), insample$test_set(1))
# Internal storage:
insample$instance # just row ids