mlr_resamplings_bootstrap {mlr3} | R Documentation |
Bootstrap Resampling
Description
Splits data into bootstrap samples (sampling with replacement).
Hyperparameters are the number of bootstrap iterations (repeats
, default: 30)
and the ratio of observations to draw per iteration (ratio
, default: 1) for the training set.
Dictionary
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("bootstrap") rsmp("bootstrap")
Parameters
-
repeats
(integer(1)
)
Number of repetitions. -
ratio
(numeric(1)
)
Ratio of observations to put into the training set.
Super class
mlr3::Resampling
-> ResamplingBootstrap
Active bindings
iters
(
integer(1)
)
Returns the number of resampling iterations, depending on the values stored in theparam_set
.
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
ResamplingBootstrap$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
ResamplingBootstrap$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
References
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069.
See Also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
-
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages). -
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
Examples
# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)
# Instantiate Resampling
bootstrap = rsmp("bootstrap", repeats = 2, ratio = 1)
bootstrap$instantiate(task)
# Individual sets:
bootstrap$train_set(1)
bootstrap$test_set(1)
# Disjunct sets:
intersect(bootstrap$train_set(1), bootstrap$test_set(1))
# Internal storage:
bootstrap$instance$M # Matrix of counts