| mlr_measures_regr.rmse {mlr3} | R Documentation |
Root Mean Squared Error
Description
Measure to compare true observed response with predicted response in regression tasks.
Details
The Root Mean Squared Error is defined as
\sqrt{\frac{1}{n} \sum_{i=1}^n w_i \left( t_i - r_i \right)^2}.
Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
mlr_measures$get("regr.rmse")
msr("regr.rmse")
Parameters
Empty ParamSet
Meta Information
Type:
"regr"Range:
[0, \infty)Minimize:
TRUERequired prediction:
response
Note
The score function calls mlr3measures::rmse() from package mlr3measures.
If the measure is undefined for the input, NaN is returned.
This can be customized by setting the field na_value.
See Also
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias,
mlr_measures_regr.ktau,
mlr_measures_regr.mae,
mlr_measures_regr.mape,
mlr_measures_regr.maxae,
mlr_measures_regr.medae,
mlr_measures_regr.medse,
mlr_measures_regr.mse,
mlr_measures_regr.msle,
mlr_measures_regr.pbias,
mlr_measures_regr.rae,
mlr_measures_regr.rmsle,
mlr_measures_regr.rrse,
mlr_measures_regr.rse,
mlr_measures_regr.rsq,
mlr_measures_regr.sae,
mlr_measures_regr.smape,
mlr_measures_regr.srho,
mlr_measures_regr.sse