mlr_measures_regr.mse {mlr3}R Documentation

Mean Squared Error

Description

Measure to compare true observed response with predicted response in regression tasks.

Details

The Mean Squared Error is defined as

\frac{1}{n} w_i \sum_{i=1}^n \left( t_i - r_i \right)^2.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("regr.mse")
msr("regr.mse")

Parameters

Empty ParamSet

Meta Information

Note

The score function calls mlr3measures::mse() from package mlr3measures.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other regression measures: mlr_measures_regr.bias, mlr_measures_regr.ktau, mlr_measures_regr.mae, mlr_measures_regr.mape, mlr_measures_regr.maxae, mlr_measures_regr.medae, mlr_measures_regr.medse, mlr_measures_regr.msle, mlr_measures_regr.pbias, mlr_measures_regr.rae, mlr_measures_regr.rmse, mlr_measures_regr.rmsle, mlr_measures_regr.rrse, mlr_measures_regr.rse, mlr_measures_regr.rsq, mlr_measures_regr.sae, mlr_measures_regr.smape, mlr_measures_regr.srho, mlr_measures_regr.sse


[Package mlr3 version 0.20.2 Index]