mlr_measures_regr.mape {mlr3} | R Documentation |
Mean Absolute Percent Error
Description
Measure to compare true observed response with predicted response in regression tasks.
Details
The Mean Absolute Percent Error is defined as
\frac{1}{n} \sum_{i=1}^n w_i \left| \frac{ t_i - r_i}{t_i} \right|.
This measure is undefined if any element of t
is 0
.
Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.mape") msr("regr.mape")
Parameters
Empty ParamSet
Meta Information
Type:
"regr"
Range:
[0, \infty)
Minimize:
TRUE
Required prediction:
response
Note
The score function calls mlr3measures::mape()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
See Also
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.rsq
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse