mlr_measures_classif.mcc {mlr3} | R Documentation |
Matthews Correlation Coefficient
Description
Measure to compare true observed labels with predicted labels in multiclass classification tasks.
Details
In the binary case, the Matthews Correlation Coefficient is defined as
where ,
,
,
are the number of true positives, false positives, true negatives, and false negatives respectively.
In the multi-class case, the Matthews Correlation Coefficient defined for a multi-class confusion matrix with
classes:
where
-
: total number of samples
-
: total number of correctly predicted samples
-
: number of predictions for each class
-
: number of true occurrences for each class
.
The above formula is undefined if any of the four sums in the denominator is 0 in the binary case and more generally if either or
is equal to 0.
The denominator is then set to 1.
When there are more than two classes, the MCC will no longer range between -1 and +1.
Instead, the minimum value will be between -1 and 0 depending on the true distribution. The maximum value is always +1.
Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.mcc") msr("classif.mcc")
Parameters
Empty ParamSet
Meta Information
Type:
"classif"
Range:
Minimize:
FALSE
Required prediction:
response
Note
The score function calls mlr3measures::mcc()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
See Also
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mbrier