| mlr_measures_classif.logloss {mlr3} | R Documentation |
Log Loss
Description
Measure to compare true observed labels with predicted probabilities in multiclass classification tasks.
Details
The Log Loss is defined as
-\frac{1}{n} \sum_{i=1}^n w_i \log \left( p_i \right )
where p_i is the probability for the true class of observation i.
Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
mlr_measures$get("classif.logloss")
msr("classif.logloss")
Parameters
Empty ParamSet
Meta Information
Type:
"classif"Range:
[0, \infty)Minimize:
TRUERequired prediction:
prob
Note
The score function calls mlr3measures::logloss() from package mlr3measures.
If the measure is undefined for the input, NaN is returned.
This can be customized by setting the field na_value.
See Also
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc,
mlr_measures_classif.auc,
mlr_measures_classif.bacc,
mlr_measures_classif.bbrier,
mlr_measures_classif.ce,
mlr_measures_classif.costs,
mlr_measures_classif.dor,
mlr_measures_classif.fbeta,
mlr_measures_classif.fdr,
mlr_measures_classif.fn,
mlr_measures_classif.fnr,
mlr_measures_classif.fomr,
mlr_measures_classif.fp,
mlr_measures_classif.fpr,
mlr_measures_classif.mauc_au1p,
mlr_measures_classif.mauc_au1u,
mlr_measures_classif.mauc_aunp,
mlr_measures_classif.mauc_aunu,
mlr_measures_classif.mbrier,
mlr_measures_classif.mcc,
mlr_measures_classif.npv,
mlr_measures_classif.ppv,
mlr_measures_classif.prauc,
mlr_measures_classif.precision,
mlr_measures_classif.recall,
mlr_measures_classif.sensitivity,
mlr_measures_classif.specificity,
mlr_measures_classif.tn,
mlr_measures_classif.tnr,
mlr_measures_classif.tp,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc,
mlr_measures_classif.bacc,
mlr_measures_classif.ce,
mlr_measures_classif.costs,
mlr_measures_classif.mauc_au1p,
mlr_measures_classif.mauc_au1u,
mlr_measures_classif.mauc_aunp,
mlr_measures_classif.mauc_aunu,
mlr_measures_classif.mbrier,
mlr_measures_classif.mcc