mlr_measures_classif.bacc {mlr3} | R Documentation |
Balanced Accuracy
Description
Measure to compare true observed labels with predicted labels in multiclass classification tasks.
Details
The Balanced Accuracy computes the weighted balanced accuracy, suitable for imbalanced data sets. It is defined analogously to the definition in sklearn.
First, the sample weights w
are normalized per class:
\hat{w}_i = \frac{w_i}{\sum_j 1(y_j = y_i) w_i}.
The balanced accuracy is calculated as
\frac{1}{\sum_i \hat{w}_i} \sum_i 1(r_i = t_i) \hat{w}_i.
Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.bacc") msr("classif.bacc")
Parameters
Empty ParamSet
Meta Information
Type:
"classif"
Range:
[0, 1]
Minimize:
FALSE
Required prediction:
response
Note
The score function calls mlr3measures::bacc()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
See Also
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc