mlr_measures_classif.bacc {mlr3}R Documentation

Balanced Accuracy

Description

Measure to compare true observed labels with predicted labels in multiclass classification tasks.

Details

The Balanced Accuracy computes the weighted balanced accuracy, suitable for imbalanced data sets. It is defined analogously to the definition in sklearn.

First, the sample weights w are normalized per class:

\hat{w}_i = \frac{w_i}{\sum_j 1(y_j = y_i) w_i}.

The balanced accuracy is calculated as

\frac{1}{\sum_i \hat{w}_i} \sum_i 1(r_i = t_i) \hat{w}_i.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("classif.bacc")
msr("classif.bacc")

Parameters

Empty ParamSet

Meta Information

Note

The score function calls mlr3measures::bacc() from package mlr3measures.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other classification measures: mlr_measures_classif.acc, mlr_measures_classif.auc, mlr_measures_classif.bbrier, mlr_measures_classif.ce, mlr_measures_classif.costs, mlr_measures_classif.dor, mlr_measures_classif.fbeta, mlr_measures_classif.fdr, mlr_measures_classif.fn, mlr_measures_classif.fnr, mlr_measures_classif.fomr, mlr_measures_classif.fp, mlr_measures_classif.fpr, mlr_measures_classif.logloss, mlr_measures_classif.mauc_au1p, mlr_measures_classif.mauc_au1u, mlr_measures_classif.mauc_aunp, mlr_measures_classif.mauc_aunu, mlr_measures_classif.mbrier, mlr_measures_classif.mcc, mlr_measures_classif.npv, mlr_measures_classif.ppv, mlr_measures_classif.prauc, mlr_measures_classif.precision, mlr_measures_classif.recall, mlr_measures_classif.sensitivity, mlr_measures_classif.specificity, mlr_measures_classif.tn, mlr_measures_classif.tnr, mlr_measures_classif.tp, mlr_measures_classif.tpr

Other multiclass classification measures: mlr_measures_classif.acc, mlr_measures_classif.ce, mlr_measures_classif.costs, mlr_measures_classif.logloss, mlr_measures_classif.mauc_au1p, mlr_measures_classif.mauc_au1u, mlr_measures_classif.mauc_aunp, mlr_measures_classif.mauc_aunu, mlr_measures_classif.mbrier, mlr_measures_classif.mcc


[Package mlr3 version 0.20.2 Index]