| mlr_learners_classif.rpart {mlr3} | R Documentation |
Classification Tree Learner
Description
A LearnerClassif for a classification tree implemented in rpart::rpart() in package rpart.
Initial parameter values
Parameter
xvalis initialized to 0 in order to save some computation time.
Custom mlr3 parameters
Parameter
modelhas been renamed tokeep_model.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
mlr_learners$get("classif.rpart")
lrn("classif.rpart")
Meta Information
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Parameters
| Id | Type | Default | Levels | Range |
| cp | numeric | 0.01 | [0, 1] |
|
| keep_model | logical | FALSE | TRUE, FALSE | - |
| maxcompete | integer | 4 | [0, \infty) |
|
| maxdepth | integer | 30 | [1, 30] |
|
| maxsurrogate | integer | 5 | [0, \infty) |
|
| minbucket | integer | - | [1, \infty) |
|
| minsplit | integer | 20 | [1, \infty) |
|
| surrogatestyle | integer | 0 | [0, 1] |
|
| usesurrogate | integer | 2 | [0, 2] |
|
| xval | integer | 10 | [0, \infty) |
|
Super classes
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRpart
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClassifRpart$new()
Method importance()
The importance scores are extracted from the model slot variable.importance.
Usage
LearnerClassifRpart$importance()
Returns
Named numeric().
Method selected_features()
Selected features are extracted from the model slot frame$var.
Usage
LearnerClassifRpart$selected_features()
Returns
character().
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClassifRpart$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
References
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification And Regression Trees. Routledge. doi:10.1201/9781315139470.
See Also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
-
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages). -
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
-
mlr3proba for probabilistic supervised regression and survival analysis.
-
mlr3cluster for unsupervised clustering.
-
-
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
Learner,
LearnerClassif,
LearnerRegr,
mlr_learners,
mlr_learners_classif.debug,
mlr_learners_classif.featureless,
mlr_learners_regr.debug,
mlr_learners_regr.featureless,
mlr_learners_regr.rpart