| TaskRegr {mlr3} | R Documentation |
Regression Task
Description
This task specializes Task and TaskSupervised for regression problems.
The target column is assumed to be numeric.
The task_type is set to "regr".
It is recommended to use as_task_regr() for construction.
Predefined tasks are stored in the dictionary mlr_tasks.
Super classes
mlr3::Task -> mlr3::TaskSupervised -> TaskRegr
Methods
Public methods
Inherited methods
mlr3::Task$add_strata()mlr3::Task$cbind()mlr3::Task$data()mlr3::Task$divide()mlr3::Task$droplevels()mlr3::Task$filter()mlr3::Task$format()mlr3::Task$formula()mlr3::Task$head()mlr3::Task$help()mlr3::Task$levels()mlr3::Task$missings()mlr3::Task$print()mlr3::Task$rbind()mlr3::Task$rename()mlr3::Task$select()mlr3::Task$set_col_roles()mlr3::Task$set_levels()mlr3::Task$set_row_roles()
Method new()
Creates a new instance of this R6 class.
The function as_task_regr() provides an alternative way to construct regression tasks.
Usage
TaskRegr$new(id, backend, target, label = NA_character_, extra_args = list())
Arguments
id(
character(1))
Identifier for the new instance.backend(DataBackend)
Either a DataBackend, or any object which is convertible to a DataBackend withas_data_backend(). E.g., adata.frame()will be converted to a DataBackendDataTable.target(
character(1))
Name of the target column.label(
character(1))
Label for the new instance.extra_args(named
list())
Named list of constructor arguments, required for converting task types viaconvert_task().
Method truth()
True response for specified row_ids. Format depends on the task type.
Defaults to all rows with role "use".
Usage
TaskRegr$truth(rows = NULL)
Arguments
rows(positive
integer())
Vector or row indices.
Returns
numeric().
Method clone()
The objects of this class are cloneable with this method.
Usage
TaskRegr$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
See Also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
-
Dictionary of Tasks: mlr_tasks
-
as.data.table(mlr_tasks)for a table of available Tasks in the running session (depending on the loaded packages). -
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task,
TaskClassif,
TaskSupervised,
TaskUnsupervised,
mlr_tasks,
mlr_tasks_boston_housing,
mlr_tasks_breast_cancer,
mlr_tasks_german_credit,
mlr_tasks_iris,
mlr_tasks_mtcars,
mlr_tasks_penguins,
mlr_tasks_pima,
mlr_tasks_sonar,
mlr_tasks_spam,
mlr_tasks_wine,
mlr_tasks_zoo
Examples
task = as_task_regr(palmerpenguins::penguins, target = "bill_length_mm")
task$task_type
task$formula()
task$truth()
task$data(rows = 1:3, cols = task$feature_names[1:2])