TaskRegr {mlr3}R Documentation

Regression Task

Description

This task specializes Task and TaskSupervised for regression problems. The target column is assumed to be numeric. The task_type is set to "regr".

It is recommended to use as_task_regr() for construction. Predefined tasks are stored in the dictionary mlr_tasks.

Super classes

mlr3::Task -> mlr3::TaskSupervised -> TaskRegr

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class. The function as_task_regr() provides an alternative way to construct regression tasks.

Usage
TaskRegr$new(id, backend, target, label = NA_character_, extra_args = list())
Arguments
id

(character(1))
Identifier for the new instance.

backend

(DataBackend)
Either a DataBackend, or any object which is convertible to a DataBackend with as_data_backend(). E.g., a data.frame() will be converted to a DataBackendDataTable.

target

(character(1))
Name of the target column.

label

(character(1))
Label for the new instance.

extra_args

(named list())
Named list of constructor arguments, required for converting task types via convert_task().


Method truth()

True response for specified row_ids. Format depends on the task type. Defaults to all rows with role "use".

Usage
TaskRegr$truth(rows = NULL)
Arguments
rows

(positive integer())
Vector or row indices.

Returns

numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
TaskRegr$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

Other Task: Task, TaskClassif, TaskSupervised, TaskUnsupervised, mlr_tasks, mlr_tasks_boston_housing, mlr_tasks_breast_cancer, mlr_tasks_german_credit, mlr_tasks_iris, mlr_tasks_mtcars, mlr_tasks_penguins, mlr_tasks_pima, mlr_tasks_sonar, mlr_tasks_spam, mlr_tasks_wine, mlr_tasks_zoo

Examples

task = as_task_regr(palmerpenguins::penguins, target = "bill_length_mm")
task$task_type
task$formula()
task$truth()
task$data(rows = 1:3, cols = task$feature_names[1:2])

[Package mlr3 version 0.20.2 Index]