| PredictionRegr {mlr3} | R Documentation |
Prediction Object for Regression
Description
This object wraps the predictions returned by a learner of class LearnerRegr, i.e.
the predicted response and standard error.
Additionally, probability distributions implemented in package distr6 are supported.
Super class
mlr3::Prediction -> PredictionRegr
Active bindings
response(
numeric())
Access the stored predicted response.se(
numeric())
Access the stored standard error.distr(
VectorDistribution)
Access the stored vector distribution. Requires packagedistr6(in repository https://raphaels1.r-universe.dev) .
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
PredictionRegr$new( task = NULL, row_ids = task$row_ids, truth = task$truth(), response = NULL, se = NULL, distr = NULL, check = TRUE )
Arguments
task(TaskRegr)
Task, used to extract defaults forrow_idsandtruth.row_ids(
integer())
Row ids of the predicted observations, i.e. the row ids of the test set.truth(
numeric())
True (observed) response.response(
numeric())
Vector of numeric response values. One element for each observation in the test set.se(
numeric())
Numeric vector of predicted standard errors. One element for each observation in the test set.distr(
VectorDistribution)
VectorDistributionfrom package distr6 (in repository https://raphaels1.r-universe.dev). Each individual distribution in the vector represents the random variable 'survival time' for an individual observation.check(
logical(1))
IfTRUE, performs some argument checks and predict type conversions.
Method clone()
The objects of this class are cloneable with this method.
Usage
PredictionRegr$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
See Also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
-
mlr3proba for probabilistic supervised regression and survival analysis.
-
mlr3cluster for unsupervised clustering.
-
Other Prediction:
Prediction,
PredictionClassif
Examples
task = tsk("boston_housing")
learner = lrn("regr.featureless", predict_type = "se")
p = learner$train(task)$predict(task)
p$predict_types
head(as.data.table(p))