KUIPER {mlquantify}R Documentation

Quantification method based on Kuiper's test

Description

It quantifies events based on testing scores, applying an adaptation of the Kuiper's test for quantification problems.

Usage

KUIPER(p.score, n.score, test)

Arguments

p.score

a numeric vector of positive scores estimated either from a validation set or from a cross-validation method.

n.score

a numeric vector of negative scores estimated either from a validation set or from a cross-validation method.

test

a numeric vector containing the score estimated for the positive class from each test set instance.

Value

A numeric vector containing the class distribution estimated from the test set.

Author(s)

Denis dos Reis <denismr@gmail.com>

Examples

library(randomForest)
library(caret)
cv <- createFolds(aeAegypti$class, 3)
tr <- aeAegypti[cv$Fold1,]
validation <- aeAegypti[cv$Fold2,]
ts <- aeAegypti[cv$Fold3,]

# -- Getting a sample from ts with 80 positive and 20 negative instances --
ts_sample <- rbind(ts[sample(which(ts$class==1),80),],
                   ts[sample(which(ts$class==2),20),])
scorer <- randomForest(class~., data=tr, ntree=500)
scores <- cbind(predict(scorer, validation, type = c("prob")), validation$class)
test.scores <- predict(scorer, ts_sample, type = c("prob"))
KUIPER(p.score = scores[scores[,3]==1,1], n.score = scores[scores[,3]==2,1],
test = test.scores[,1])

[Package mlquantify version 0.2.0 Index]