dbscan {mlpack} | R Documentation |
DBSCAN clustering
Description
An implementation of DBSCAN clustering. Given a dataset, this can compute and return a clustering of that dataset.
Usage
dbscan(
input,
epsilon = NA,
min_size = NA,
naive = FALSE,
selection_type = NA,
single_mode = FALSE,
tree_type = NA,
verbose = getOption("mlpack.verbose", FALSE)
)
Arguments
input |
Input dataset to cluster (numeric matrix). |
epsilon |
Radius of each range search. Default value "1" (numeric). |
min_size |
Minimum number of points for a cluster. Default value "5" (integer). |
naive |
If set, brute-force range search (not tree-based) will be used. Default value "FALSE" (logical). |
selection_type |
If using point selection policy, the type of selection to use ('ordered', 'random'). Default value "ordered" (character). |
single_mode |
If set, single-tree range search (not dual-tree) will be used. Default value "FALSE" (logical). |
tree_type |
If using single-tree or dual-tree search, the type of tree to use ('kd', 'r', 'r-star', 'x', 'hilbert-r', 'r-plus', 'r-plus-plus', 'cover', 'ball'). Default value "kd" (character). |
verbose |
Display informational messages and the full list of parameters and timers at the end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logical). |
Details
This program implements the DBSCAN algorithm for clustering using accelerated tree-based range search. The type of tree that is used may be parameterized, or brute-force range search may also be used.
The input dataset to be clustered may be specified with the "input" parameter; the radius of each range search may be specified with the "epsilon" parameters, and the minimum number of points in a cluster may be specified with the "min_size" parameter.
The "assignments" and "centroids" output parameters may be used to save the output of the clustering. "assignments" contains the cluster assignments of each point, and "centroids" contains the centroids of each cluster.
The range search may be controlled with the "tree_type", "single_mode", and "naive" parameters. "tree_type" can control the type of tree used for range search; this can take a variety of values: 'kd', 'r', 'r-star', 'x', 'hilbert-r', 'r-plus', 'r-plus-plus', 'cover', 'ball'. The "single_mode" parameter will force single-tree search (as opposed to the default dual-tree search), and '"naive" will force brute-force range search.
Value
A list with several components:
assignments |
Output matrix for assignments of each point (integer row). |
centroids |
Matrix to save output centroids to (numeric matrix). |
Author(s)
mlpack developers
Examples
# An example usage to run DBSCAN on the dataset in "input" with a radius of
# 0.5 and a minimum cluster size of 5 is given below:
## Not run:
dbscan(input=input, epsilon=0.5, min_size=5)
## End(Not run)