mldr_evaluate {mldr} | R Documentation |
Evaluate predictions made by a multilabel classifier
Description
Taking as input an mldr
object and a matrix with the predictions
given by a classifier, this function evaluates the classifier performance through
several multilabel metrics.
Usage
mldr_evaluate(mldr, predictions, threshold = 0.5)
Arguments
mldr |
Object of |
predictions |
Matrix with the labels predicted for each instance in the |
threshold |
Threshold to use to generate bipartition of labels. By default the value 0.5 is used |
Value
A list with multilabel predictive performance measures. The items in the list will be
-
accuracy
-
example_auc
-
average_precision
-
coverage
-
fmeasure
-
hamming_loss
-
macro_auc
-
macro_fmeasure
-
macro_precision
-
macro_recall
-
micro_auc
-
micro_fmeasure
-
micro_precision
-
micro_recall
-
one_error
-
precision
-
ranking_loss
-
recall
-
subset_accuracy
-
roc
The roc
element corresponds to a roc
object associated to the MicroAUC
value. This object can be given as input to plot
for plotting the ROC curve
The example_auc
, macro_auc
, micro_auc
and roc
members will be NULL
if the pROC
package is not installed.
See Also
mldr
, Basic metrics, Averaged metrics, Ranking-based metrics, roc.mldr
Examples
## Not run:
library(mldr)
# Get the true labels in emotions
predictions <- as.matrix(emotions$dataset[, emotions$labels$index])
# and introduce some noise (alternatively get the predictions from some classifier)
noised_labels <- cbind(sample(1:593, 200, replace = TRUE), sample(1:6, 200, replace = TRUE))
predictions[noised_labels] <- sample(0:1, 100, replace = TRUE)
# then evaluate predictive performance
res <- mldr_evaluate(emotions, predictions)
str(res)
plot(res$roc, main = "ROC curve for emotions")
## End(Not run)