Basic metrics {mldr} | R Documentation |
Multi-label evaluation metrics
Description
Several evaluation metrics designed for multi-label problems.
Usage
hamming_loss(true_labels, predicted_labels)
subset_accuracy(true_labels, predicted_labels)
Arguments
true_labels |
Matrix of true labels, columns corresponding to labels and rows to instances. |
predicted_labels |
Matrix of predicted labels, columns corresponding to labels and rows to instances. |
Details
Available metrics in this category
-
hamming_loss
: describes the average absolute distance between a predicted label and its true value. -
subset_accuracy
: the ratio of correctly predicted labelsets.
Value
Resulting value in the range [0, 1]
See Also
Other evaluation metrics: Averaged metrics
,
Ranking-based metrics
Examples
true_labels <- matrix(c(
1,1,1,
0,0,0,
1,0,0,
1,1,1,
0,0,0,
1,0,0
), ncol = 3, byrow = TRUE)
predicted_labels <- matrix(c(
1,1,1,
0,0,0,
1,0,0,
1,1,0,
1,0,0,
0,1,0
), ncol = 3, byrow = TRUE)
hamming_loss(true_labels, predicted_labels)
subset_accuracy(true_labels, predicted_labels)
[Package mldr version 0.4.3 Index]