summary.saem.mmkin {mkin} | R Documentation |
Summary method for class "saem.mmkin"
Description
Lists model equations, initial parameter values, optimised parameters for fixed effects (population), random effects (deviations from the population mean) and residual error model, as well as the resulting endpoints such as formation fractions and DT50 values. Optionally (default is FALSE), the data are listed in full.
Usage
## S3 method for class 'saem.mmkin'
summary(
object,
data = FALSE,
verbose = FALSE,
covariates = NULL,
covariate_quantile = 0.5,
distimes = TRUE,
...
)
## S3 method for class 'summary.saem.mmkin'
print(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
Arguments
object |
an object of class saem.mmkin |
data |
logical, indicating whether the full data should be included in the summary. |
verbose |
Should the summary be verbose? |
covariates |
Numeric vector with covariate values for all variables in any covariate models in the object. If given, it overrides 'covariate_quantile'. |
covariate_quantile |
This argument only has an effect if the fitted object has covariate models. If so, the default is to show endpoints for the median of the covariate values (50th percentile). |
distimes |
logical, indicating whether DT50 and DT90 values should be included. |
... |
optional arguments passed to methods like |
x |
an object of class summary.saem.mmkin |
digits |
Number of digits to use for printing |
Value
The summary function returns a list based on the saemix::SaemixObject obtained in the fit, with at least the following additional components
saemixversion , mkinversion , Rversion |
The saemix, mkin and R versions used |
date.fit , date.summary |
The dates where the fit and the summary were produced |
diffs |
The differential equations used in the degradation model |
use_of_ff |
Was maximum or minimum use made of formation fractions |
data |
The data |
confint_trans |
Transformed parameters as used in the optimisation, with confidence intervals |
confint_back |
Backtransformed parameters, with confidence intervals if available |
confint_errmod |
Error model parameters with confidence intervals |
ff |
The estimated formation fractions derived from the fitted model. |
distimes |
The DT50 and DT90 values for each observed variable. |
SFORB |
If applicable, eigenvalues of SFORB components of the model. |
The print method is called for its side effect, i.e. printing the summary.
Author(s)
Johannes Ranke for the mkin specific parts saemix authors for the parts inherited from saemix.
Examples
# Generate five datasets following DFOP-SFO kinetics
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "m1"),
m1 = mkinsub("SFO"), quiet = TRUE)
set.seed(1234)
k1_in <- rlnorm(5, log(0.1), 0.3)
k2_in <- rlnorm(5, log(0.02), 0.3)
g_in <- plogis(rnorm(5, qlogis(0.5), 0.3))
f_parent_to_m1_in <- plogis(rnorm(5, qlogis(0.3), 0.3))
k_m1_in <- rlnorm(5, log(0.02), 0.3)
pred_dfop_sfo <- function(k1, k2, g, f_parent_to_m1, k_m1) {
mkinpredict(dfop_sfo,
c(k1 = k1, k2 = k2, g = g, f_parent_to_m1 = f_parent_to_m1, k_m1 = k_m1),
c(parent = 100, m1 = 0),
sampling_times)
}
ds_mean_dfop_sfo <- lapply(1:5, function(i) {
mkinpredict(dfop_sfo,
c(k1 = k1_in[i], k2 = k2_in[i], g = g_in[i],
f_parent_to_m1 = f_parent_to_m1_in[i], k_m1 = k_m1_in[i]),
c(parent = 100, m1 = 0),
sampling_times)
})
names(ds_mean_dfop_sfo) <- paste("ds", 1:5)
ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) {
add_err(ds,
sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
n = 1)[[1]]
})
## Not run:
# Evaluate using mmkin and saem
f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo,
quiet = TRUE, error_model = "tc", cores = 5)
f_saem_dfop_sfo <- saem(f_mmkin_dfop_sfo)
print(f_saem_dfop_sfo)
illparms(f_saem_dfop_sfo)
f_saem_dfop_sfo_2 <- update(f_saem_dfop_sfo,
no_random_effect = c("parent_0", "log_k_m1"))
illparms(f_saem_dfop_sfo_2)
intervals(f_saem_dfop_sfo_2)
summary(f_saem_dfop_sfo_2, data = TRUE)
# Add a correlation between random effects of g and k2
cov_model_3 <- f_saem_dfop_sfo_2$so@model@covariance.model
cov_model_3["log_k2", "g_qlogis"] <- 1
cov_model_3["g_qlogis", "log_k2"] <- 1
f_saem_dfop_sfo_3 <- update(f_saem_dfop_sfo,
covariance.model = cov_model_3)
intervals(f_saem_dfop_sfo_3)
# The correlation does not improve the fit judged by AIC and BIC, although
# the likelihood is higher with the additional parameter
anova(f_saem_dfop_sfo, f_saem_dfop_sfo_2, f_saem_dfop_sfo_3)
## End(Not run)