saem {mkin} | R Documentation |
Fit nonlinear mixed models with SAEM
Description
This function uses saemix::saemix()
as a backend for fitting nonlinear mixed
effects models created from mmkin row objects using the Stochastic Approximation
Expectation Maximisation algorithm (SAEM).
Usage
saem(object, ...)
## S3 method for class 'mmkin'
saem(
object,
transformations = c("mkin", "saemix"),
error_model = "auto",
degparms_start = numeric(),
test_log_parms = TRUE,
conf.level = 0.6,
solution_type = "auto",
covariance.model = "auto",
omega.init = "auto",
covariates = NULL,
covariate_models = NULL,
no_random_effect = NULL,
error.init = c(1, 1),
nbiter.saemix = c(300, 100),
control = list(displayProgress = FALSE, print = FALSE, nbiter.saemix = nbiter.saemix,
save = FALSE, save.graphs = FALSE),
verbose = FALSE,
quiet = FALSE,
...
)
## S3 method for class 'saem.mmkin'
print(x, digits = max(3, getOption("digits") - 3), ...)
saemix_model(
object,
solution_type = "auto",
transformations = c("mkin", "saemix"),
error_model = "auto",
degparms_start = numeric(),
covariance.model = "auto",
no_random_effect = NULL,
omega.init = "auto",
covariates = NULL,
covariate_models = NULL,
error.init = numeric(),
test_log_parms = FALSE,
conf.level = 0.6,
verbose = FALSE,
...
)
saemix_data(object, covariates = NULL, verbose = FALSE, ...)
Arguments
object |
An mmkin row object containing several fits of the same mkinmod model to different datasets |
... |
Further parameters passed to saemix::saemixModel. |
transformations |
Per default, all parameter transformations are done
in mkin. If this argument is set to 'saemix', parameter transformations
are done in 'saemix' for the supported cases, i.e. (as of version 1.1.2)
SFO, FOMC, DFOP and HS without fixing |
error_model |
Possibility to override the error model used in the mmkin object |
degparms_start |
Parameter values given as a named numeric vector will be used to override the starting values obtained from the 'mmkin' object. |
test_log_parms |
If TRUE, an attempt is made to use more robust starting values for population parameters fitted as log parameters in mkin (like rate constants) by only considering rate constants that pass the t-test when calculating mean degradation parameters using mean_degparms. |
conf.level |
Possibility to adjust the required confidence level for parameter that are tested if requested by 'test_log_parms'. |
solution_type |
Possibility to specify the solution type in case the automatic choice is not desired |
covariance.model |
Will be passed to |
omega.init |
Will be passed to |
covariates |
A data frame with covariate data for use in 'covariate_models', with dataset names as row names. |
covariate_models |
A list containing linear model formulas with one explanatory variable, i.e. of the type 'parameter ~ covariate'. Covariates must be available in the 'covariates' data frame. |
no_random_effect |
Character vector of degradation parameters for which there should be no variability over the groups. Only used if the covariance model is not explicitly specified. |
error.init |
Will be passed to |
nbiter.saemix |
Convenience option to increase the number of iterations |
control |
Passed to saemix::saemix. |
verbose |
Should we print information about created objects of type saemix::SaemixModel and saemix::SaemixData? |
quiet |
Should we suppress the messages saemix prints at the beginning and the end of the optimisation process? |
x |
An saem.mmkin object to print |
digits |
Number of digits to use for printing |
Details
An mmkin row object is essentially a list of mkinfit objects that have been obtained by fitting the same model to a list of datasets using mkinfit.
Starting values for the fixed effects (population mean parameters, argument
psi0 of saemix::saemixModel()
are the mean values of the parameters found
using mmkin.
Value
An S3 object of class 'saem.mmkin', containing the fitted saemix::SaemixObject as a list component named 'so'. The object also inherits from 'mixed.mmkin'.
An saemix::SaemixModel object.
An saemix::SaemixData object.
See Also
summary.saem.mmkin plot.mixed.mmkin
Examples
## Not run:
ds <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) subset(x$data[c("name", "time", "value")]))
names(ds) <- paste("Dataset", 6:10)
f_mmkin_parent_p0_fixed <- mmkin("FOMC", ds,
state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
anova(f_saem_sfo, f_saem_fomc, f_saem_dfop)
anova(f_saem_sfo, f_saem_dfop, test = TRUE)
illparms(f_saem_dfop)
f_saem_dfop_red <- update(f_saem_dfop, no_random_effect = "g_qlogis")
anova(f_saem_dfop, f_saem_dfop_red, test = TRUE)
anova(f_saem_sfo, f_saem_fomc, f_saem_dfop)
# The returned saem.mmkin object contains an SaemixObject, therefore we can use
# functions from saemix
library(saemix)
compare.saemix(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so)
plot(f_saem_fomc$so, plot.type = "convergence")
plot(f_saem_fomc$so, plot.type = "individual.fit")
plot(f_saem_fomc$so, plot.type = "npde")
plot(f_saem_fomc$so, plot.type = "vpc")
f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
anova(f_saem_fomc, f_saem_fomc_tc, test = TRUE)
sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
A1 = mkinsub("SFO"))
fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
A1 = mkinsub("SFO"))
dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
A1 = mkinsub("SFO"))
# The following fit uses analytical solutions for SFO-SFO and DFOP-SFO,
# and compiled ODEs for FOMC that are much slower
f_mmkin <- mmkin(list(
"SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
ds, quiet = TRUE)
# saem fits of SFO-SFO and DFOP-SFO to these data take about five seconds
# each on this system, as we use analytical solutions written for saemix.
# When using the analytical solutions written for mkin this took around
# four minutes
f_saem_sfo_sfo <- saem(f_mmkin["SFO-SFO", ])
f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
# We can use print, plot and summary methods to check the results
print(f_saem_dfop_sfo)
plot(f_saem_dfop_sfo)
summary(f_saem_dfop_sfo, data = TRUE)
# The following takes about 6 minutes
f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve",
nbiter.saemix = c(200, 80))
#anova(
# f_saem_dfop_sfo,
# f_saem_dfop_sfo_deSolve))
# If the model supports it, we can also use eigenvalue based solutions, which
# take a similar amount of time
#f_saem_sfo_sfo_eigen <- saem(f_mmkin["SFO-SFO", ], solution_type = "eigen",
# control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))
## End(Not run)