mkinpredict {mkin} | R Documentation |
Produce predictions from a kinetic model using specific parameters
Description
This function produces a time series for all the observed variables in a kinetic model as specified by mkinmod, using a specific set of kinetic parameters and initial values for the state variables.
Usage
mkinpredict(x, odeparms, odeini, outtimes, ...)
## S3 method for class 'mkinmod'
mkinpredict(
x,
odeparms = c(k_parent_sink = 0.1),
odeini = c(parent = 100),
outtimes = seq(0, 120, by = 0.1),
solution_type = "deSolve",
use_compiled = "auto",
use_symbols = FALSE,
method.ode = "lsoda",
atol = 1e-08,
rtol = 1e-10,
maxsteps = 20000L,
map_output = TRUE,
na_stop = TRUE,
...
)
## S3 method for class 'mkinfit'
mkinpredict(
x,
odeparms = x$bparms.ode,
odeini = x$bparms.state,
outtimes = seq(0, 120, by = 0.1),
solution_type = "deSolve",
use_compiled = "auto",
method.ode = "lsoda",
atol = 1e-08,
rtol = 1e-10,
map_output = TRUE,
...
)
Arguments
x |
A kinetic model as produced by mkinmod, or a kinetic fit as fitted by mkinfit. In the latter case, the fitted parameters are used for the prediction. |
odeparms |
A numeric vector specifying the parameters used in the kinetic model, which is generally defined as a set of ordinary differential equations. |
odeini |
A numeric vector containing the initial values of the state variables of the model. Note that the state variables can differ from the observed variables, for example in the case of the SFORB model. |
outtimes |
A numeric vector specifying the time points for which model predictions should be generated. |
... |
Further arguments passed to the ode solver in case such a solver is used. |
solution_type |
The method that should be used for producing the predictions. This should generally be "analytical" if there is only one observed variable, and usually "deSolve" in the case of several observed variables. The third possibility "eigen" is fast in comparison to uncompiled ODE models, but not applicable to some models, e.g. using FOMC for the parent compound. |
use_compiled |
If set to |
use_symbols |
If set to |
method.ode |
The solution method passed via mkinpredict to ode] in case the solution type is "deSolve" and we are not using compiled code. When using compiled code, only lsoda is supported. |
atol |
Absolute error tolerance, passed to the ode solver. |
rtol |
Absolute error tolerance, passed to the ode solver. |
maxsteps |
Maximum number of steps, passed to the ode solver. |
map_output |
Boolean to specify if the output should list values for the observed variables (default) or for all state variables (if set to FALSE). Setting this to FALSE has no effect for analytical solutions, as these always return mapped output. |
na_stop |
Should it be an error if ode returns NaN values |
Value
A matrix with the numeric solution in wide format
Author(s)
Johannes Ranke
Examples
SFO <- mkinmod(degradinol = mkinsub("SFO"))
# Compare solution types
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
solution_type = "analytical")
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
solution_type = "deSolve")
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
solution_type = "deSolve", use_compiled = FALSE)
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
solution_type = "eigen")
# Compare integration methods to analytical solution
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
solution_type = "analytical")[21,]
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
method = "lsoda", use_compiled = FALSE)[21,]
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
method = "ode45", use_compiled = FALSE)[21,]
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
method = "rk4", use_compiled = FALSE)[21,]
# rk4 is not as precise here
# The number of output times used to make a lot of difference until the
# default for atol was adjusted
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100),
seq(0, 20, by = 0.1))[201,]
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100),
seq(0, 20, by = 0.01))[2001,]
# Comparison of the performance of solution types
SFO_SFO = mkinmod(parent = list(type = "SFO", to = "m1"),
m1 = list(type = "SFO"), use_of_ff = "max")
if(require(rbenchmark)) {
benchmark(replications = 10, order = "relative", columns = c("test", "relative", "elapsed"),
eigen = mkinpredict(SFO_SFO,
c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01),
c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
solution_type = "eigen")[201,],
deSolve_compiled = mkinpredict(SFO_SFO,
c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01),
c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
solution_type = "deSolve")[201,],
deSolve = mkinpredict(SFO_SFO,
c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01),
c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
solution_type = "deSolve", use_compiled = FALSE)[201,],
analytical = mkinpredict(SFO_SFO,
c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01),
c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
solution_type = "analytical", use_compiled = FALSE)[201,])
}
## Not run:
# Predict from a fitted model
f <- mkinfit(SFO_SFO, FOCUS_2006_C, quiet = TRUE)
f <- mkinfit(SFO_SFO, FOCUS_2006_C, quiet = TRUE, solution_type = "deSolve")
head(mkinpredict(f))
## End(Not run)