plot.tune_vlmc {mixvlmc}R Documentation

Plot the results of automatic (CO)VLMC complexity selection

Description

This function plots the results of tune_vlmc() or tune_covlmc().

Usage

## S3 method for class 'tune_vlmc'
plot(
  x,
  value = c("criterion", "likelihood"),
  cutoff = c("quantile", "native"),
  ...
)

## S3 method for class 'tune_covlmc'
plot(
  x,
  value = c("criterion", "likelihood"),
  cutoff = c("quantile", "native"),
  ...
)

Arguments

x

a tune_vlmc object

value

the criterion to plot (default "criterion").

cutoff

the scale used for the cut off criterion (default "quantile")

...

additional parameters passed to base::plot()

Details

The standard plot consists in showing the evolution of the criterion used to select the model (AIC() or BIC()) as a function of the cut off criterion expressed in the quantile scale (the quantile is used by default to offer a common default behaviour between vlmc() and covlmc()). Parameters can be used to display instead the loglikelihood() of the model (by setting value="likelihood") and to use the native scale for the cut off when available (by setting cutoff="native").

Value

the tune_vlmc object invisibly

Customisation

The function sets several default before calling base::plot(), namely:

These parameters can be overridden by specifying other values when calling the function. All parameters specified in addition to x, value and cutoff are passed to base::plot().

Examples

dts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
tune_result <- tune_vlmc(dts)
## default plot
plot(tune_result)
## likelihood
plot(tune_result, value = "likelihood")
## parameters overriding
plot(tune_result,
  value = "likelihood",
  xlab = "Cut off", type = "b"
)
pc <- powerconsumption[powerconsumption$week %in% 10:12, ]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
dts_best_model_tune <- tune_covlmc(dts, dts_cov, criterion = "AIC")
plot(dts_best_model_tune)
plot(dts_best_model_tune, value = "likelihood")


[Package mixvlmc version 0.2.1 Index]