metrics.ctx_node_covlmc {mixvlmc}R Documentation

Predictive quality metrics for a node of a COVLMC context tree

Description

This function computes and returns predictive quality metrics for a node (ctx_node_covlmc) extracted from a covlmc

Usage

## S3 method for class 'ctx_node_covlmc'
metrics(model, ...)

Arguments

model

A ctx_node_covlmc object as returned by find_sequence() or contexts.covlmc()

...

Additional parameters for predictive metrics computation.

Details

Compared to metrics.covlmc(), this function focuses on a single context and assesses the quality of its predictions, disregarding observations that have other contexts. Apart from this limited scope, the function operates as metrics.covlmc().

Value

an object of class metrics.covlmc with the following components:

References

David J. Hand and Robert J. Till (2001). "A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems." Machine Learning 45(2), p. 171–186. DOI: doi:10.1023/A:1010920819831.

See Also

metrics.vlmc(), metrics.ctx_node(), contexts.vlmc(), predict.vlmc().

Examples

pc <- powerconsumption[powerconsumption$week == 5, ]
breaks <- c(
  0,
  median(powerconsumption$active_power, na.rm = TRUE),
  max(powerconsumption$active_power, na.rm = TRUE)
)
labels <- c(0, 1)
dts <- cut(pc$active_power, breaks = breaks, labels = labels)
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5)
m_ctxs <- contexts(m_cov)
## get the predictive metrics for each context
lapply(m_ctxs, metrics)

[Package mixvlmc version 0.2.1 Index]