simulate_mixtur {mixtur} | R Documentation |
Generate simulated data from mixture models
Description
Generate simulated data from mixture models
Usage
simulate_mixtur(n_trials, model, kappa, p_u, p_n, K, set_size)
Arguments
n_trials |
an integer indicating how many trials to simulate |
model |
a string indicating the model to be fit to the data. Currently the options are "2_component", "3_component", "slots", and "slots_averaging". |
kappa |
a numeric value indicating the concentration parameter of the von Mises distribution to use in the simulations. Note, when simulating from the 2_component or 3_component model, if multiple values are provided to the set_size argument, kappa must be a vector of parameter values to use for each set size). |
p_u |
a numeric value indicating the probability of uniform guessing to use when simulating from the 2_component and 3_component models. Note, when simulating from the 2_component or 3_component model, if multiple values are provided to the set_size argument, p_u must be a vector of parameter values to use for each set size). |
p_n |
a numeric value indicating the probability of a non-target response when simulating from the 3_component model. Note, when simulating from the 2_component or 3_component model, if multiple values are provided to the set_size argument, p_n must be a vector of parameter values to use for each set size). |
K |
a numeric value indicating the capacity value to use when simulating from the slots and slots_averaging models. |
set_size |
a numeric value (or vector) indicating the set size(s) to use in the simulations |
Value
Returns a data frame containing simulated responses from the requested model per set-size (if applicable).
Examples
# simulate from the slots model
slots_data <- simulate_mixtur(n_trials = 1000,
model = "slots",
kappa = 8.2,
K = 2.5,
set_size = c(2, 4, 6, 8))
# simulate one set size from the 3_component model
component_data <- simulate_mixtur(n_trials = 1000,
model = "3_component",
kappa = 8.2,
p_u = .1,
p_n = .15,
set_size = 4)
# simulate multiple set sizes from the 3_component model
component_data_multiple_sets <- simulate_mixtur(n_trials = 1000,
model = "3_component",
kappa = c(10, 8, 6),
p_u = c(.1, .1, .1),
p_n = c(.1, .15, .2),
set_size = c(2, 4, 6))