lm {mixlm}R Documentation

Fitting Linear Models


lm is used to fit linear models. It can be used to carry out regression, single stratum analysis of variance and analysis of covariance (although aov may provide a more convenient interface for these). The version distributed through the package mixlm extends the capabilities with balanced mixture models and lmer interfacing. Random effects are indicated by wrapping their formula entries in r(). Also, effect level names are kept in printing.


lm(formula, data, subset, weights, na.action,
   method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
   singular.ok = TRUE, contrasts = "contr.sum", offset, 
   unrestricted = TRUE, REML = NULL, ...)



an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under ‘Details’.


an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which lm is called.


an optional vector specifying a subset of observations to be used in the fitting process.


an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector. If non-NULL, weighted least squares is used with weights weights (that is, minimizing sum(w*e^2)); otherwise ordinary least squares is used. See also ‘Details’,


a function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of options, and is na.fail if that is unset. The ‘factory-fresh’ default is na.omit. Another possible value is NULL, no action. Value na.exclude can be useful.


the method to be used; for fitting, currently only method = "qr" is supported; method = "model.frame" returns the model frame (the same as with model = TRUE, see below).

model, x, y, qr

logicals. If TRUE the corresponding components of the fit (the model frame, the model matrix, the response, the QR decomposition) are returned.


logical. If FALSE (the default in S but not in R) a singular fit is an error.


character indicating which coding should be applied to all factors or an optional list. See the contrasts.arg of model.matrix.default. Defaults to "contr.sum". See Details for more information.


this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases. One or more offset terms can be included in the formula instead or as well, and if more than one are specified their sum is used. See model.offset.


additional argument for switching between unrestricted and restricted models if including random variables.


is used to invoke restricted maximum likelihood (TRUE) or maximum likelihood (FALSE) estimation instead of least squares.


additional arguments to be passed to the low level regression fitting functions (see below).


Models for lm are specified symbolically. A typical model has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with duplicates removed. A specification of the form first:second indicates the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first + second + first:second.

If the formula includes an offset, this is evaluated and subtracted from the response.

If response is a matrix a linear model is fitted separately by least-squares to each column of the matrix.

See model.matrix for some further details. The terms in the formula will be re-ordered so that main effects come first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a terms object as the formula (see aov and demo(glm.vr) for an example).

A formula has an implied intercept term. To remove this use either y ~ x - 1 or y ~ 0 + x. See formula for more details of allowed formulae.

Non-NULL weights can be used to indicate that different observations have different variances (with the values in weights being inversely proportional to the variances); or equivalently, when the elements of weights are positive integers w_i, that each response y_i is the mean of w_i unit-weight observations (including the case that there are w_i observations equal to y_i and the data have been summarized).

lm calls the lower level functions lm.fit, etc, see below, for the actual numerical computations. For programming only, you may consider doing likewise.

All of weights, subset and offset are evaluated in the same way as variables in formula, that is first in data and then in the environment of formula.

The contrasts argument is applied when the lm model is fitted. In additional to the standard contrasts from the stats package, one can choose weighted coding: contr.weighted which balances unbalanced data through factor weighting. Different from the original version of lm, a single contrast can be indicated to automatically be applied to all factors.


lm returns an object of class c("lmm","lm") or for multiple responses of class c("mlm", "lm").

The functions summary and anova are used to obtain and print a summary and analysis of variance table of the results. The generic accessor functions coefficients, effects, fitted.values and residuals extract various useful features of the value returned by lm.

An object of class "lm" is a list containing at least the following components:


a named vector of coefficients


the residuals, that is response minus fitted values.


the fitted mean values.


the numeric rank of the fitted linear model.


(only for weighted fits) the specified weights.


the residual degrees of freedom.


the matched call.


the terms object used.


(only where relevant) the contrasts used.


(only where relevant) a record of the levels of the factors used in fitting.


the offset used (missing if none were used).


if requested, the response used.


if requested, the model matrix used.


if requested (the default), the model frame used.


(where relevant) information returned by model.frame on the special handling of NAs.

In addition, non-null fits will have components assign, effects and (unless not requested) qr relating to the linear fit, for use by extractor functions such as summary and effects.

And models containing random effect will contain random having additional information about the model.

Using time series

Considerable care is needed when using lm with time series.

Unless na.action = NULL, the time series attributes are stripped from the variables before the regression is done. (This is necessary as omitting NAs would invalidate the time series attributes, and if NAs are omitted in the middle of the series the result would no longer be a regular time series.)

Even if the time series attributes are retained, they are not used to line up series, so that the time shift of a lagged or differenced regressor would be ignored. It is good practice to prepare a data argument by ts.intersect(..., dframe = TRUE), then apply a suitable na.action to that data frame and call lm with na.action = NULL so that residuals and fitted values are time series.


Offsets specified by offset will not be included in predictions by predict.lm, whereas those specified by an offset term in the formula will be.


The design was inspired by the S function of the same name described in Chambers (1992). The implementation of model formula by Ross Ihaka was based on Wilkinson & Rogers (1973). Mixed model extensions by Kristian Hovde Liland.


Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial models for analysis of variance. Applied Statistics, 22, 392–9.

See Also

summary.lmm for summaries and anova.lmm for the ANOVA table; aov for a different interface.

The generic functions coef, effects, residuals, fitted, vcov.

predict.lm (via predict) for prediction, including confidence and prediction intervals; confint for confidence intervals of parameters.

lm.influence for regression diagnostics, and glm for generalized linear models.

The underlying low level functions, lm.fit for plain, and lm.wfit for weighted regression fitting.

More lm() examples are available e.g., in anscombe, attitude, freeny, LifeCycleSavings, longley, stackloss, swiss.

biglm in package biglm for an alternative way to fit linear models to large datasets (especially those with many cases).

print.AnovaMix, AnovaMix, Anova



## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2,10,20, labels=c("Ctl","Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
lm.D90 <- lm(weight ~ group - 1) # omitting intercept

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(lm.D9, las = 1)      # Residuals, Fitted, ...

# Linear mixed model
dataset   <- data.frame(y=rnorm(8), x=factor(c(rep(1,4),rep(0,4))), z=factor(rep(c(1,0),4)))
mixlm <- lm(y~x*r(z), data = dataset)

### less simple examples in "See Also" above

[Package mixlm version 1.3.0 Index]