Simulated Maximum Likelihood Estimation of Mixed Logit Models for Large Datasets


[Up] [Top]

Documentation for package ‘mixl’ version 1.3.4

Help Pages

mixl-package Estimate mixed multinomial logit models
av_matrix Extract the availabilites matrix from the dataset, using column indicies
check_draw_inputs Check the inputs to the draw function
check_inputs Check the inputs to the estimate function
compileUtilityFunction compileUtilityFunction Deprecated, please see 'specify_model()'
create_halton_draws Create a standard set of Halton draws to use in estimation
estimate Runs a maximum likelihood estimation on a mixl choice model
extract_av_cols Extract the availabilites matrix from the dataset using a column name prefix
extract_indiv_data Extract the individual level data from the dataset for use in posterior analysis
generate_default_availabilities Generate a ones-matrix of availabilities
mixl Estimate mixed multinomial logit models
posteriors Calculate the posteriors for a specified and estimated model
print.mixl Prints the output of a model
print.summary.mixl Print a model summary
probabilities Calculate the probabilities for a specified and estimated model. Note that if new data or draws are provided, the model will not be re-estimated
specify_model Validate the utility functions against the dataset and generate the optimised logliklihood function
summary.mixl Create a model summary
summary_tex Return tex formatted output of a model summary. If an output_file parameter is provided, save the object to that location
utilities Return the the utilities for a set of coefficients
vcov.mixl Calculates the Variance-Covariance Matrix of the mixl summary