stoch {mixSSG}R Documentation

Estimating the tail index of the skewed sub-Gaussian stable distribution using the stochastic EM algorithm given that other parameters are known.

Description

Suppose Y1,Y2,,Yn{\boldsymbol{Y}}_1,{\boldsymbol{Y}}_2, \cdots,{\boldsymbol{Y}}_n are realizations following dd-dimensional skewed sub-Gaussian stable distribution. Herein, we estimate the tail thickness parameter 0<α20<\alpha \leq 2 when μ\boldsymbol{\mu} (location vector in Rd{{{R}}}^{d}, λ\boldsymbol{\lambda} (skewness vector in Rd{{{R}}}^{d}), and Σ\Sigma (positive definite symmetric dispersion matrix are assumed to be known.

Usage

stoch(Y, alpha0, Mu0, Sigma0, Lambda0)

Arguments

Y

a vector (or an n×dn\times d matrix) at which the density function is approximated.

alpha0

initial value for the tail thickness parameter.

Mu0

a vector giving the initial value for the location parameter.

Sigma0

a positive definite symmetric matrix specifying the initial value for the dispersion matrix.

Lambda0

a vector giving the initial value for the skewness parameter.

Details

Here, we assume that parameters μ{\boldsymbol{\mu}}, λ{\boldsymbol{\lambda}}, and Σ\Sigma are known and only the tail thickness parameter needs to be estimated.

Value

Estimated tail thickness parameter α\alpha, of the skewed sub-Gaussian stable distribution.

Author(s)

Mahdi Teimouri

Examples

n <- 100
alpha <- 1.4
Mu <- rep(0, 2)
Sigma <- diag(2)
Lambda <- rep(2, 2)
Y <- rssg(n, alpha, Mu, Sigma, Lambda)
stoch(Y, alpha, Mu, Sigma, Lambda)

[Package mixSSG version 2.1.1 Index]