stoch {mixSSG} | R Documentation |
Estimating the tail index of the skewed sub-Gaussian stable distribution using the stochastic EM algorithm given that other parameters are known.
Description
Suppose {\boldsymbol{Y}}_1,{\boldsymbol{Y}}_2, \cdots,{\boldsymbol{Y}}_n
are realizations following d
-dimensional skewed sub-Gaussian stable distribution. Herein, we estimate the tail thickness parameter 0<\alpha \leq 2
when \boldsymbol{\mu}
(location vector in {{{R}}}^{d}
, \boldsymbol{\lambda}
(skewness vector in {{{R}}}^{d}
), and \Sigma
(positive definite symmetric dispersion matrix are assumed to be known.
Usage
stoch(Y, alpha0, Mu0, Sigma0, Lambda0)
Arguments
Y |
a vector (or an |
alpha0 |
initial value for the tail thickness parameter. |
Mu0 |
a vector giving the initial value for the location parameter. |
Sigma0 |
a positive definite symmetric matrix specifying the initial value for the dispersion matrix. |
Lambda0 |
a vector giving the initial value for the skewness parameter. |
Details
Here, we assume that parameters {\boldsymbol{\mu}}
, {\boldsymbol{\lambda}}
, and \Sigma
are known and only the tail thickness parameter needs to be estimated.
Value
Estimated tail thickness parameter \alpha
, of the skewed sub-Gaussian stable distribution.
Author(s)
Mahdi Teimouri
Examples
n <- 100
alpha <- 1.4
Mu <- rep(0, 2)
Sigma <- diag(2)
Lambda <- rep(2, 2)
Y <- rssg(n, alpha, Mu, Sigma, Lambda)
stoch(Y, alpha, Mu, Sigma, Lambda)