stoch {mixSSG} | R Documentation |
Estimating the tail index of the skewed sub-Gaussian stable distribution using the stochastic EM algorithm given that other parameters are known.
Description
Suppose are realizations following
-dimensional skewed sub-Gaussian stable distribution. Herein, we estimate the tail thickness parameter
when
(location vector in
,
(skewness vector in
), and
(positive definite symmetric dispersion matrix are assumed to be known.
Usage
stoch(Y, alpha0, Mu0, Sigma0, Lambda0)
Arguments
Y |
a vector (or an |
alpha0 |
initial value for the tail thickness parameter. |
Mu0 |
a vector giving the initial value for the location parameter. |
Sigma0 |
a positive definite symmetric matrix specifying the initial value for the dispersion matrix. |
Lambda0 |
a vector giving the initial value for the skewness parameter. |
Details
Here, we assume that parameters ,
, and
are known and only the tail thickness parameter needs to be estimated.
Value
Estimated tail thickness parameter , of the skewed sub-Gaussian stable distribution.
Author(s)
Mahdi Teimouri
Examples
n <- 100
alpha <- 1.4
Mu <- rep(0, 2)
Sigma <- diag(2)
Lambda <- rep(2, 2)
Y <- rssg(n, alpha, Mu, Sigma, Lambda)
stoch(Y, alpha, Mu, Sigma, Lambda)