rssg {mixSSG}R Documentation

Simulating skewed sub-Gaussian stable random vector.

Description

Each skewed sub-Gaussian stable (SSG) random vector Y\bf{Y}, admits the representation

Y=dμ+PλZ0+PΣ12Z1, {\bf{Y}} \mathop=\limits^d {\boldsymbol{\mu}}+\sqrt{P}{\boldsymbol{\lambda}}\vert{Z}_0\vert + \sqrt{P}{\Sigma}^{\frac{1}{2}}{\bf{Z}}_1,

where μRd{\boldsymbol{\mu}} \in {R}^{d} is location vector, λRd{\boldsymbol{\lambda}} \in {R}^{d} is skewness vector, Σ\Sigma is a positive definite symmetric dispersion matrix, and 0<α20<\alpha \leq 2 is tail thickness. Further, PP is a positive stable random variable, Z0N(0,1){Z}_0\sim N({0},1), and Z1Nd(0,Σ){\bf{Z}}_1\sim N_{d}\bigl({\bf{0}}, \Sigma\bigr). We note that ZZ, Z0Z_0, and Z1{\bf{Z}}_1 are mutually independent.

Usage

rssg(n, alpha, Mu, Sigma, Lambda)

Arguments

n

the number of samples required.

alpha

the tail thickness parameter.

Mu

a vector giving the location parameter.

Sigma

a positive definite symmetric matrix specifying the dispersion matrix.

Lambda

a vector giving the skewness parameter.

Value

simulated realizations of size nn from the skewed sub-Gaussian stable distribution.

Author(s)

Mahdi Teimouri

Examples

n <- 4
alpha <- 1.4
Mu <- rep(0, 2)
Sigma <- diag(2)
Lambda <- rep(2, 2)
rssg(n, alpha, Mu, Sigma, Lambda)

[Package mixSSG version 2.1.1 Index]