dssg {mixSSG} | R Documentation |
Approximating the density function of skewed sub-Gaussian stable distribution.
Description
Suppose d
-dimensional random vector \boldsymbol{Y}
follows a skewed sub-Gaussian stable distribution with density function
f_{\boldsymbol{Y}}(\boldsymbol{y} | \boldsymbol{\Theta})
for {\boldsymbol{\Theta}}=(\alpha,\boldsymbol{\mu},\Sigma, \boldsymbol{\lambda})
where \alpha
, \boldsymbol{\mu}
, \Sigma
, and \boldsymbol{\lambda}
are tail thickness, location, dispersion matrix, and skewness parameters, respectively. Herein, we give a good approximation for f_{\boldsymbol{Y}}(\boldsymbol{y} | \boldsymbol{\Theta})
. First , for {\cal{N}}=50
, define
L=\frac{\Gamma(\frac{{\cal{N}}\alpha}{2}+1+\frac{\alpha}{2})\Gamma\bigl(\frac{d+{\cal{N}}\alpha}{2}+\frac{\alpha}{2}\bigr)}{
\Gamma(\frac{{\cal{N}}\alpha}{2}+1)\Gamma\bigl(\frac{d+{\cal{N}}\alpha}{2}\bigr)({\cal{N}}+1)}.
If d(\boldsymbol{y})\leq 2L^{\frac{2}{\alpha}}
, then
f_{\boldsymbol{Y}}(\boldsymbol{y} | {\boldsymbol{\Theta}}) \simeq
\frac{{C}_{0}\sqrt{2\pi \delta }}{N} \sum_{i=1}^{N} \exp\Bigl\{-\frac{d(\boldsymbol{y})}{2p_{i}}\Bigr\}\Phi \bigl( m| 0, \sqrt{\delta p_{i}} \bigr)p_{i}^{-\frac{d}{2}},
where, p_1,p_2,\cdots, p_N
(for N=3000
) are independent realizations following positive stable distribution that are generated using command rpstable(3000, alpha)
. Otherwise, if d(\boldsymbol{y})> 2L^{\frac{2}{\alpha}}
, we have
f_{\boldsymbol{Y}}(\boldsymbol{y} | \boldsymbol{\Theta})\simeq
\frac{{C}_{0}\sqrt{d(\boldsymbol{y})\delta}}{\sqrt{\pi}}
\sum_{j=1}^{{\cal{N}}}\frac{ (-1)^{j-1}\Gamma(\frac{j\alpha}{2}+1)\sin \bigl(\frac{j\pi \alpha}{2}\bigr)}
{\Gamma(j+1)\bigl[\frac{d(\boldsymbol{y})}{2}\bigr]^{\frac{d+1+j\alpha}{2}}}\Gamma\Bigl(\frac{d+j\alpha}{2}\Bigr)
T_{d+j\alpha}\biggl(m\sqrt{\frac{d+j\alpha}{d(\boldsymbol{y})\delta}}\biggr),
where T_{\nu}(x)
is distribution function of the Student's t
with \nu
degrees of freedom, \Phi(x|a,b)
is the cumulative density function of normal distribution wih mean a
and standard deviation b
, and
{C_{0}=2 (2\pi)^{-\frac{d+1}{2}}|{\Sigma}|^{-\frac{1}{2}},}
d(\boldsymbol{y})=(\boldsymbol{y}-\boldsymbol{\mu})^{'}{{\Omega}^{-1}}(\boldsymbol{y}-\boldsymbol{\mu}),
{m}=\boldsymbol{\lambda}^{'}{{\Omega}}^{-1}(\boldsymbol{y}-\boldsymbol{\mu}),
{\Omega}={\Sigma}+\boldsymbol{\lambda}\boldsymbol{\lambda}^{'},
{\delta}=1-\boldsymbol{\lambda}^{'}{\Omega}^{-1}\boldsymbol{\lambda}
.
Usage
dssg(Y, alpha, Mu, Sigma, Lambda)
Arguments
Y |
a vector (or an |
alpha |
the tail thickness parameter. |
Mu |
a vector giving the location parameter. |
Sigma |
a positive definite symmetric matrix specifying the dispersion matrix. |
Lambda |
a vector giving the skewness parameter. |
Value
simulated realizations of size n
from positive \alpha
-stable distribution.
Author(s)
Mahdi Teimouri
Examples
n <- 4
alpha <- 1.4
Mu <- rep(0, 2)
Sigma <- diag(2)
Lambda <- rep(2, 2)
Y <- rssg(n, alpha, Mu, Sigma, Lambda)
dssg(Y, alpha, Mu, Sigma, Lambda)